A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been d...A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092.展开更多
A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phospho...A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.展开更多
Two new complexes,[Zn_(2)(L1)(HL1)(NO_(3))]·CH_(3)OH(1)and[Zn_(3)(L2)(L3)_(3)Cl]·CH_(3)OH(2),were successfully synthesized by‘one-pot’method based on cinnoline-3-ylhydrazine ligand and zinc with 2-hydroxy-...Two new complexes,[Zn_(2)(L1)(HL1)(NO_(3))]·CH_(3)OH(1)and[Zn_(3)(L2)(L3)_(3)Cl]·CH_(3)OH(2),were successfully synthesized by‘one-pot’method based on cinnoline-3-ylhydrazine ligand and zinc with 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-3-methoxybenzaldehyde ligands,respectively,where H_(2)L1=5-methoxy-2-(phthalazin-1-ylhydrazonomethyl)-phenol,H_(2)L2=2-methoxy-6-(phthalazin-1-yl-hydrazonomethyl)-phenol,HL3=2-(1,8-dihydro-[1,2,4]triazolo[3,4-α]phthalazin-3-yl)-6-methoxy-phenol.Complexes 1 and 2 were characterized by infrared spectroscopy,elemental analysis,single-crystal X-ray diffraction,powder X-ray diffraction,etc.It is worth noting that the cinnolin-3-yl-hydrazine ligand and 2-hydroxy-3-methoxybenzaldehyde form two types of Schiff bases(H_(2)L2 and HL3)when in situ reacting and coordinating with Zn(Ⅱ),and HL3 also has two coordination modes.In addition,the fluorescence performance showed that complex 1 can achieve selective and sensitive sensing of Al^(3+)in water with a detection limit of 6.37μmol·L^(-1).CCDC:2413978,1;2413979,2.展开更多
4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to b...4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.展开更多
Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for...Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for Ca^(2+)and Mn^(2+)is significant for water quality monitoring and human health.In this paper,blue fluorescent Ti3C2 MXene-based quantum dots(MQDs,λ_(em)=445 nm)are prepared using Ti_(3)C_(2)MXene as the precursor.Through the chelation effect of ethylene diamine tetraacetic acid(EDTA),a blue and red dual-emission fluorescent probe,MQDs-EDTA-Eu^(3+)-DPA,was constructed.Herein,dipicolinic acid(DPA)acts as an absorbing ligand and significantly enhances the red fluorescence of europium ions(Eu^(3+))at 616 nm through the“antenna effect”.The blue fluorescence of MQDs serves as an internal reference signal.High concentrations of Ca^(2+)can quench the red fluorescence of Eu^(3+)-DPA;Mn^(2+)can be excited to emit purple fluorescence at 380 nm after coordinating with DPA,red fluorescence of Eu^(3+)-DPA serves as the internal reference signal.Based on the above two fluorescence intensity changes,ratiometric fluorescence detection methods for Ca^(2+)and Mn^(2+)are established.The fluorescence intensity ratio(IF_(616)/IF_(445))exhibits a linear relationship with Ca^(2+)in the range of 35-120μmol/L,with a detection limit of 5.98μmol/L.The fluorescence intensity ratio(IF_(380)/IF_(616))shows good linearity with Mn^(2+)in the range of 0-14μmol/L,with a detection limit of 28.6 nmol/L.This method was successfully applied to the quantitative analysis of Ca^(2+)and Mn^(2+)in commercially available mineral water(Nongfu Spring,Ganten,and Evergrande),with recovery rates of 80.6%-117%and relative standard deviations(RSD)of 0.76%-4.6%.Additionally,by preparing MQD-based fluorescent test strips,visual detections of Ca^(2+)and Mn^(2+)are achieved.This work demonstrates the application potential of MQDs in the field of visual fluorescence sensing of ions in water quality.展开更多
The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of li...The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.展开更多
文摘A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092.
文摘A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.
文摘Two new complexes,[Zn_(2)(L1)(HL1)(NO_(3))]·CH_(3)OH(1)and[Zn_(3)(L2)(L3)_(3)Cl]·CH_(3)OH(2),were successfully synthesized by‘one-pot’method based on cinnoline-3-ylhydrazine ligand and zinc with 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-3-methoxybenzaldehyde ligands,respectively,where H_(2)L1=5-methoxy-2-(phthalazin-1-ylhydrazonomethyl)-phenol,H_(2)L2=2-methoxy-6-(phthalazin-1-yl-hydrazonomethyl)-phenol,HL3=2-(1,8-dihydro-[1,2,4]triazolo[3,4-α]phthalazin-3-yl)-6-methoxy-phenol.Complexes 1 and 2 were characterized by infrared spectroscopy,elemental analysis,single-crystal X-ray diffraction,powder X-ray diffraction,etc.It is worth noting that the cinnolin-3-yl-hydrazine ligand and 2-hydroxy-3-methoxybenzaldehyde form two types of Schiff bases(H_(2)L2 and HL3)when in situ reacting and coordinating with Zn(Ⅱ),and HL3 also has two coordination modes.In addition,the fluorescence performance showed that complex 1 can achieve selective and sensitive sensing of Al^(3+)in water with a detection limit of 6.37μmol·L^(-1).CCDC:2413978,1;2413979,2.
文摘4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.
基金The Tertiary Education Scientific Research Project of the Guangzhou Municipal Education Bureau(2024312227)Innovative and Entrepreneurial Projects of Guangzhou University Students(202411078014)+2 种基金Guangzhou University Open Sharing Fund for Instruments and Equipment(2025)National Major Scientific Research Instrument Development Project(22227804)Sub-subject of the National Key Research Project(2023YFB3210100)。
文摘Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for Ca^(2+)and Mn^(2+)is significant for water quality monitoring and human health.In this paper,blue fluorescent Ti3C2 MXene-based quantum dots(MQDs,λ_(em)=445 nm)are prepared using Ti_(3)C_(2)MXene as the precursor.Through the chelation effect of ethylene diamine tetraacetic acid(EDTA),a blue and red dual-emission fluorescent probe,MQDs-EDTA-Eu^(3+)-DPA,was constructed.Herein,dipicolinic acid(DPA)acts as an absorbing ligand and significantly enhances the red fluorescence of europium ions(Eu^(3+))at 616 nm through the“antenna effect”.The blue fluorescence of MQDs serves as an internal reference signal.High concentrations of Ca^(2+)can quench the red fluorescence of Eu^(3+)-DPA;Mn^(2+)can be excited to emit purple fluorescence at 380 nm after coordinating with DPA,red fluorescence of Eu^(3+)-DPA serves as the internal reference signal.Based on the above two fluorescence intensity changes,ratiometric fluorescence detection methods for Ca^(2+)and Mn^(2+)are established.The fluorescence intensity ratio(IF_(616)/IF_(445))exhibits a linear relationship with Ca^(2+)in the range of 35-120μmol/L,with a detection limit of 5.98μmol/L.The fluorescence intensity ratio(IF_(380)/IF_(616))shows good linearity with Mn^(2+)in the range of 0-14μmol/L,with a detection limit of 28.6 nmol/L.This method was successfully applied to the quantitative analysis of Ca^(2+)and Mn^(2+)in commercially available mineral water(Nongfu Spring,Ganten,and Evergrande),with recovery rates of 80.6%-117%and relative standard deviations(RSD)of 0.76%-4.6%.Additionally,by preparing MQD-based fluorescent test strips,visual detections of Ca^(2+)and Mn^(2+)are achieved.This work demonstrates the application potential of MQDs in the field of visual fluorescence sensing of ions in water quality.
基金Project(52204363)supported by the National Natural Science Foundation of ChinaProject(2024JJ8042)supported by the Hunan Natural Science Foundation,ChinaProject(22C0220)supported by the Education Department of Hunan Province,China。
文摘The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.