期刊文献+
共找到491篇文章
< 1 2 25 >
每页显示 20 50 100
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
1
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 fault diagnosis Deep learning Multi-scale convolution Open-circuit Convolutional neural network
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
2
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 fault diagnosis Graph neural networks Graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
GAF结合卷积神经网络的滚动轴承故障诊断研究
3
作者 张文兴 陈豪 +1 位作者 刘文婧 王建国 《机械设计与制造》 北大核心 2025年第5期12-17,共6页
为了充分发挥深度卷积神经网络识别二维图片在轴承故障诊断过程中的优势,这里提出了一种改进的格拉姆角场,改进后的算法在生成图片后具有更多的特征,经验证其在神经网络训练中收敛速度更快。其次结合改进的CNN模型,改进后的模型引进深... 为了充分发挥深度卷积神经网络识别二维图片在轴承故障诊断过程中的优势,这里提出了一种改进的格拉姆角场,改进后的算法在生成图片后具有更多的特征,经验证其在神经网络训练中收敛速度更快。其次结合改进的CNN模型,改进后的模型引进深度卷积结合注意力机制,保证模型在实现更少模型参数和更快的推理速度同时,在验证集能够取得更高的准确率。试验和研究结果表明,该图片编码方式结合改进的神经网络,在模型收敛上更迅速,并且在验证集上具有更好的准确率和鲁棒性。 展开更多
关键词 格拉姆角场 故障诊断 深度学习 神经网络
在线阅读 下载PDF
融合卷积深度置信网络与可拓神经网络的齿轮故障诊断方法
4
作者 王体春 夏天 费叶琦 《计算机集成制造系统》 北大核心 2025年第6期2178-2193,共16页
针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入... 针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入软池化层优化的膨胀卷积深度置信网络进行特征提取,并采用注意力机制技术加权融合多通道特征;利用侧距优化的加权可拓神经网络完成齿轮故障分类。最后,通过公开数据集进行验证和对比分析表明,该模型相比卷积神经网络模型、深度置信网络模型、高斯卷积深度置信网络模型等具有更高的识别精度,在噪声干扰和变工况条件下具有良好的故障诊断性能。 展开更多
关键词 深度学习 卷积深度置信网络 可拓神经网络 故障诊断
在线阅读 下载PDF
CNN-DLSTM结合迁移学习的小样本轴承故障诊断方法
5
作者 仇芝 徐泽瑜 +2 位作者 陈涛 石明江 韦明辉 《机械科学与技术》 北大核心 2025年第2期288-297,共10页
针对轴承故障数据样本少、未知故障难以分类等问题,提出了一种将一维卷积神经网络(1D convolutional neural network, 1D-CNN)连接深层长短时记忆循环神经网络(Deep long-short-term memory neural network, DLSTM)的模型结合迁移学习... 针对轴承故障数据样本少、未知故障难以分类等问题,提出了一种将一维卷积神经网络(1D convolutional neural network, 1D-CNN)连接深层长短时记忆循环神经网络(Deep long-short-term memory neural network, DLSTM)的模型结合迁移学习的故障诊断方法。该诊断方法基于电机振动数据,利用CNN提取故障特征;将特征作为DLSTM的输入,进一步学习、编码从CNN中学习的特征序列信息,捕获高级特征用于故障分类;首先用充足的西储轴承数据对该故障诊断模型进行预训练,再利用迁移学习放松训练数据和测试数据可不必独立同分布的能力,使用自制实验平台的小样本数据微调预训练模型。最后用迁移学习后的模型,对跨工况、跨型号、跨故障的故障轴承数据进行模拟实验。结果表明,所提出的方法与其他方法相比鲁棒性强,训练速度更快,能够更精确的诊断故障,平均诊断精度达到99%以上。 展开更多
关键词 小样本数据集故障诊断 卷积神经网络 长短期记忆网络 迁移学习
在线阅读 下载PDF
融合时频图与分布适应的轴承故障诊断方法
6
作者 许志恒 葛鲲鹏 《机械设计与制造》 北大核心 2025年第4期51-59,共9页
针对实际工业场景下轴承故障诊断仍面临的缺少足量故障样本和变工况导致数据分布差异,提出一种融合时频图与分布适应的轴承故障诊断方法。首先,采用连续小波变换处理原始振动信号并提取时频图;其次,构建卷积神经网络实现深度特征自适应... 针对实际工业场景下轴承故障诊断仍面临的缺少足量故障样本和变工况导致数据分布差异,提出一种融合时频图与分布适应的轴承故障诊断方法。首先,采用连续小波变换处理原始振动信号并提取时频图;其次,构建卷积神经网络实现深度特征自适应提取;其次,提出一种改进平衡分布对齐的域适应方法,通过融合最大边际准则实现缩小不同域间分布差异过程中提高特征数据可分性,并基于源域特征数据训练获得自适应分类器,实现不同工况下的轴承故障识别与分类;最后,为验证所提出方法的有效性与泛化能力,采用两种轴承故障数据集开展平衡与非平衡数据样本下的跨域故障诊断实验分析,实验结果表明所提出方法在两种数据集上的平均故障诊断准确率最高分别可达100%和97.50%,明显优于基于经典迁移学习方法构建的对比模型。 展开更多
关键词 故障诊断 振动信号 时频图 卷积神经网络 迁移学习
在线阅读 下载PDF
基于改进域对抗网络的齿轮箱跨工况故障诊断
7
作者 贾宝惠 苏家成 高源 《电子测量技术》 北大核心 2025年第3期83-91,共9页
针对不同工况下采集的齿轮箱振动数据特征分布不一致和噪声成分影响迁移效果的问题,本文提出了一种结合注意力机制的域对抗迁移网络的深度迁移学习故障诊断方法。首先,将带标签的振动信号和未带标签的振动信号通过固定长度的数据分割方... 针对不同工况下采集的齿轮箱振动数据特征分布不一致和噪声成分影响迁移效果的问题,本文提出了一种结合注意力机制的域对抗迁移网络的深度迁移学习故障诊断方法。首先,将带标签的振动信号和未带标签的振动信号通过固定长度的数据分割方法构建成数据集;其次,为减少噪声样本带来的负迁移影响,采用卷积注意力模块(CBAM)以及判别损失项辅助特征提取器提取具有区分度的特征,加强分类决策边界;最后,为解决数据特征分布不一致的问题,采用多核最大均值差异(MK-MMD)对齐源域和目标域的全局分布,并利用对抗机制对齐两域的子领域分布。在公开的变工况齿轮箱故障数据集上进行试验验证,结果表明,所提方法的平均识别准确率达到96.25%以上,并通过与其他诊断方法的对比分析,验证了所提方法的有效性和优越性。 展开更多
关键词 判别损失项 卷积注意力模块 域对抗迁移网络 迁移学习 故障诊断
在线阅读 下载PDF
基于深度学习的旋转机械大数据智能故障诊断方法 被引量:1
8
作者 宫文峰 张美玲 陈辉 《计算机集成制造系统》 北大核心 2025年第1期264-277,共14页
深度学习作为一种智能高效的模式识别技术,已得到基于大数据驱动的机械装备故障诊断领域学者的广泛关注。为了更加有效地从多传感器原始故障数据中提取出故障特征,解决单一诊断算法提取时序数据特征时的信息丢失问题,提出一种基于改进... 深度学习作为一种智能高效的模式识别技术,已得到基于大数据驱动的机械装备故障诊断领域学者的广泛关注。为了更加有效地从多传感器原始故障数据中提取出故障特征,解决单一诊断算法提取时序数据特征时的信息丢失问题,提出一种基于改进的长短期记忆循环神经网络-全局均值池化卷积神经网络(LSTM-GCNN)的深度循环卷积神经网络新算法,用于机械装备大数据的故障智能诊断。该算法首先运用长短时记忆循环神经网络(LSTM)从多通道原始数据中提取时间关联性记忆特征,然后再将特征数据输入到一维卷积神经网络(1D-CNN)中进行微小差异特征辨识,并且为了减少模型参数量和提高算法检测速度,设计了一个一维全局均值池化层用于代替传统1D-CNN算法中的全连接层结构。通过将提出的算法用于滚动轴承在1马力、2马力和3马力多种负载工况下采集的3通道振动信号数据进行诊断验证,分别得到100%、99.85%和99.78%的诊断准确率,实验结果相比传统的DNN、LSTM和CNN算法具有更加优越的诊断性能;对齿轮箱在空载和承载两种运行工况下的8通道原始数据进行故障诊断的准确率分别高达99.93%和99.8%,具有良好的迁移通用性能。 展开更多
关键词 智能故障诊断 深度学习 循环神经网络 卷积神经网络 多传感器
在线阅读 下载PDF
基于零样本学习的风力机故障诊断方法 被引量:1
9
作者 潘美琪 贺兴 《上海交通大学学报》 北大核心 2025年第5期561-568,共8页
在工程实践中,风力机故障诊断面临训练故障与实际故障类别不同的情况,为实现对风力机未知故障的诊断,需要将训练过程中习得的故障特征信息迁移至未知故障中.不同于直接建立故障样本与故障类别间映射关系的传统方法,提出一种基于零样本... 在工程实践中,风力机故障诊断面临训练故障与实际故障类别不同的情况,为实现对风力机未知故障的诊断,需要将训练过程中习得的故障特征信息迁移至未知故障中.不同于直接建立故障样本与故障类别间映射关系的传统方法,提出一种基于零样本学习的风力机故障诊断方法来完成故障特征迁移.通过描述每种故障的属性建立故障属性矩阵,将其嵌入故障样本空间与故障类别空间之中;并基于卷积神经网络建立故障属性学习器,基于欧氏距离建立故障分类器,形成从故障样本预测故障属性进而分类故障的诊断流程.最后通过与其他零样本学习方法的对比验证了所提故障诊断方法的有效性和优越性. 展开更多
关键词 风力机故障诊断 零样本学习 卷积神经网络 知识-数据混合驱动
在线阅读 下载PDF
Fuzzy ART及其在故障诊断中的应用 被引量:4
10
作者 林京 《西安交通大学学报》 EI CAS CSCD 北大核心 1999年第5期88-92,共5页
FuzyART是近几年出现的一种新型ART(adaptiveresonancetheory)技术,文中介绍了该技术的实现方法,并用它对实测的不同工况的机器振动信号进行自组织聚类,收到了令人满意的效果.分析结果表明,采... FuzyART是近几年出现的一种新型ART(adaptiveresonancetheory)技术,文中介绍了该技术的实现方法,并用它对实测的不同工况的机器振动信号进行自组织聚类,收到了令人满意的效果.分析结果表明,采用这种无督学习的神经网络具有有督学习神经网络所无法替代的优势. 展开更多
关键词 神经网络 故障诊断 自组织聚类 ART 模糊ART
在线阅读 下载PDF
基于IBCAN的风力发电机轴承故障诊断方法研究 被引量:1
11
作者 和林芳 王道涵 +2 位作者 田淼 安文杰 孙鲜明 《太阳能学报》 北大核心 2025年第1期97-104,共8页
针对风力发电机轴承实际运行工况下故障类别随时间的推移逐步积累的问题,提出一种改进的具有增量学习能力的宽度卷积注意网络(IBCAN)的故障诊断方法,可在不重新训练模型的基础上诊断新增故障类别。首先,将风力发电机轴承振动信号利用连... 针对风力发电机轴承实际运行工况下故障类别随时间的推移逐步积累的问题,提出一种改进的具有增量学习能力的宽度卷积注意网络(IBCAN)的故障诊断方法,可在不重新训练模型的基础上诊断新增故障类别。首先,将风力发电机轴承振动信号利用连续小波变换(CWT)提取时频特征;其次,针对历史故障类别数据集,利用卷积注意网络(CAN)获得风力发电机轴承振动信号小波变换图的深度特征表示;然后,利用弹性网回归改进宽度学习系统(IBLS)将CAN所获特征和相应标签传输到IBLS中进行分类;最后,针对新增故障类别数据集,通过IBLS的扩展节点进行增量学习,进而实现新增故障类别诊断。通过实际采集的风力发电机轴承数据对所提方法进行试验验证,并与其他方法进行对比,结果表明,该方法能有效地更新风力发电机轴承故障诊断模型,增量学习新故障类别,对实际工程中风力发电机轴承故障诊断研究具有重要意义。 展开更多
关键词 风力发电机 轴承 故障诊断 增量学习 卷积神经网络
在线阅读 下载PDF
基于多路层次化混合专家模型的轴承故障诊断方法 被引量:1
12
作者 徐欣然 张绍兵 +2 位作者 成苗 张洋 曾尚 《计算机应用》 北大核心 2025年第1期59-68,共10页
针对滚动轴承故障诊断中处理复杂工况准确率较低的问题,提出一个多任务学习(MTL)模型,即多路层次化混合专家(MHMoE)模型,以及对应的层次化训练模式。该模型结合多阶段、多任务联合训练,实现了层次化的信息共享模式,并在普通MTL模式的基... 针对滚动轴承故障诊断中处理复杂工况准确率较低的问题,提出一个多任务学习(MTL)模型,即多路层次化混合专家(MHMoE)模型,以及对应的层次化训练模式。该模型结合多阶段、多任务联合训练,实现了层次化的信息共享模式,并在普通MTL模式的基础上进一步提升了模型的泛化性和故障识别准确率,使模型能同时在复杂与简单的数据集上出色地完成任务,同时,结合一维ResNet的瓶颈层结构,在保证网络深度的同时,也规避梯度爆炸与梯度消失等问题,从而能充分地提取数据集的相关特征。以帕德博恩大学轴承故障数据集(PU)为测试数据集设计的实验的结果表明,在不同工况复杂度下,与不使用MTL的单任务混合专家单元结构(OMoE)-ResNet18模型相比,所提模型的准确率提升5.45~9.30个百分点;而与集成经验模态分解的Hilbert谱变换方法(EEMD-Hilbert)、MMoE(Multigate Mixture-of-Experts)和多尺度多任务注意力卷积神经网络(MSTACNN)等模型相比,所提模型的准确率至少提升3.21~16.45个百分点。 展开更多
关键词 轴承故障诊断 预测性维护 多任务学习 深度学习 卷积神经网络
在线阅读 下载PDF
基于深度随机神经网络集成的滚动轴承故障诊断
13
作者 郑凯 周鹏 张成龙 《组合机床与自动化加工技术》 北大核心 2025年第7期141-144,152,共5页
宽度学习系统(broad learning system,BLS)是一种随机化学习架构,能够通过对输入数据进行多次特征映射并增强,保障随机神经网络的学习性能。为提高轴承故障诊断精度,基于BLS架构,提出来一种面向滚动轴承故障诊断的深度随机神经网络集成... 宽度学习系统(broad learning system,BLS)是一种随机化学习架构,能够通过对输入数据进行多次特征映射并增强,保障随机神经网络的学习性能。为提高轴承故障诊断精度,基于BLS架构,提出来一种面向滚动轴承故障诊断的深度随机神经网络集成模型(deep random neural networks ensemble,DRNNE)。首先,DRNNE借鉴BLS特征映射方式生成映射节点,并将映射节点进行多次特征增强构建基础学习器;然后,利用集成学习融合多个基础学习器诊断结果,以提升模型泛化性能;最后,基于凯斯西储大学轴承数据进行了实验分析,提出模型相比于宽度学习系统(broad learning system,BLS)、随机向量函数链接神经网络(random vector functional link neural network,RVFL)、随机向量函数链接神经网络集成(random vector functional link neural networks ensemble,RVFLE)、深度置信网络(deep belief net,DBN)、支持向量机(support vector machine,SVM)模型具有更高的分类性能。 展开更多
关键词 故障诊断 深度随机神经网络 集成学习 深度学习 宽度学习系统
在线阅读 下载PDF
基于卷积神经网络的风电机组气动不平衡故障诊断方法研究
14
作者 杨旺春 梁雪 孙传宗 《太阳能学报》 北大核心 2025年第3期531-537,共7页
为解决风电机组中风轮气动不平衡的诊断问题,降低风电机组的运维成本,提出一种基于一维卷积神经网络的风轮不平衡识别方法。融合变分模态分解和相关峭度计算实现风轮气动不平衡的感知。并提出基于一维卷积神经网络的气动不平衡识别方法... 为解决风电机组中风轮气动不平衡的诊断问题,降低风电机组的运维成本,提出一种基于一维卷积神经网络的风轮不平衡识别方法。融合变分模态分解和相关峭度计算实现风轮气动不平衡的感知。并提出基于一维卷积神经网络的气动不平衡识别方法,以机舱的振动加速度作为输入,识别气动不平衡的具体程度。在不同湍流强度和噪声环境下进行交叉验证,识别结果的准确率在95%以上,证明该方法可应用于风轮不平衡的诊断中,提升风电机组运行的安全性。 展开更多
关键词 风电机组 机器学习 故障诊断 风轮不平衡 卷积神经网络
在线阅读 下载PDF
基于GCN的轴向柱塞泵故障诊断方法
15
作者 袁科研 兰媛 +6 位作者 黄家海 刘智飞 王君 李国彦 牛蔺楷 钮晨光 熊晓燕 《振动.测试与诊断》 北大核心 2025年第1期140-145,205,共7页
目前的深度学习方法在故障诊断领域中没有考虑数据之间的相互依赖关系,从而忽略了数据彼此之间的空间特征。针对此问题,提出一种基于图卷积神经网络(graph convolutional neural networks,简称GCN)模型的轴向柱塞泵故障诊断方法。首先,... 目前的深度学习方法在故障诊断领域中没有考虑数据之间的相互依赖关系,从而忽略了数据彼此之间的空间特征。针对此问题,提出一种基于图卷积神经网络(graph convolutional neural networks,简称GCN)模型的轴向柱塞泵故障诊断方法。首先,将轴向柱塞泵各类故障状态的原始信号进行预处理,构建具有标签的数据集;其次,使用欧式距离判定数据集中各个样本彼此之间的特征相似度,通过相似度对比的方法将数据集转化为图结构数据;然后,使用GCN自适应学习图结构数据中的节点特征和节点与节点彼此之间的空间特征,确定GCN模型的参数;最后,对测试样本进行故障状态识别,并分析该模型在不同工况下的性能表现。结果表明,该模型结构稳定,可以在不同工况下保持良好的泛化性能。 展开更多
关键词 轴向柱塞泵 故障诊断 深度学习 图卷积神经网络
在线阅读 下载PDF
基于并行优化CBAM的轻量级故障诊断模型
16
作者 贾志洋 许兆 +2 位作者 冷艳梅 闻新 龚浩宇 《应用科学学报》 北大核心 2025年第1期94-109,共16页
在工程实践中,故障诊断模型的性能受到多种因素的影响,如强噪声干扰、小样本、模型参数规模较大等,对现有的数据驱动设备诊断智能模型的应用提出了挑战。本文提出一种基于并行优化卷积块注意力模块(convolutional block attention modul... 在工程实践中,故障诊断模型的性能受到多种因素的影响,如强噪声干扰、小样本、模型参数规模较大等,对现有的数据驱动设备诊断智能模型的应用提出了挑战。本文提出一种基于并行优化卷积块注意力模块(convolutional block attention module,CBAM)的轻量级模型PCSA-Net。首先,采用多尺度信号特征提取器(signal feature extractor,SFE)将输入的传感器信号转换为特征映射。然后,优化传统的CBAM,开发协同注意力块,设计一种可学习的层缩放策略,并行化感知数据特征,使用点卷积与平均池化层组合,构建PW-Pool降维模块,减少模型参数量,对特征图的通道特征向量进行积分,得到最终的诊断结果。最后,选取包含轴承常见故障的两个数据集对模型进行验证,实验结果显示,在小样本轴承故障诊断(bearing fault diagnosis,BFD)任务中,本文模型与现有主流的故障诊断框架相比在轻量性和鲁棒性等方面表现更加优异,可满足实际轴承故障检测需求。 展开更多
关键词 变工况故障诊断 卷积神经网络 注意力机制 深度学习
在线阅读 下载PDF
核反应堆冷却剂系统故障诊断动态模糊径向基神经网络模型
17
作者 朱佳浩 戴滔 +1 位作者 隋阳 李枭瀚 《科学技术与工程》 北大核心 2025年第11期4567-4573,共7页
针对传统的故障诊断方法难以在不确定环境下准确诊断核电厂核反应堆冷却剂系统(reactor coolant system, RCS)故障这一问题,按照以下路线建立了一种核电厂RCS故障诊断动态模糊径向基神经网络(dynamic fuzzy radial basis function neura... 针对传统的故障诊断方法难以在不确定环境下准确诊断核电厂核反应堆冷却剂系统(reactor coolant system, RCS)故障这一问题,按照以下路线建立了一种核电厂RCS故障诊断动态模糊径向基神经网络(dynamic fuzzy radial basis function neural network, DFRBFNN)模型。首先,根据RCS的故障类型和样本数据,确定DFRBFNN模型的初始结构;然后,应用径向基神经网络方法,构建了RCS故障诊断DFRBFNN初始模型,应用随机初始化方法,对DFRBFNN初始模型的去模糊层到输出层的连接权重进行初始化处理;最后,应用误差下降率法,修正DFRBFNN初始模型的结构和参数,构建了RCS故障诊断DFRBFNN模型。应用所建立的模型对冷却剂丧失、失流和蒸汽发生器管道破裂事故进行诊断,并与传统的故障诊断模型进行对比,验证了本文所建立模型的有效性。研究表明,所构建的核电厂RCS故障诊断DFRBFNN模型能够在不确定环境下准确地诊断RCS的故障。 展开更多
关键词 核电厂 核反应堆冷却剂系统 故障诊断 动态模糊径向基神经网络模型
在线阅读 下载PDF
立井提升系统刚性罐道故障诊断方法
18
作者 王建风 靳远志 +2 位作者 张勇 王永振 和佳聪 《工矿自动化》 北大核心 2025年第6期113-121,共9页
刚性罐道是立井提升系统的关键部件,由于井筒形变、钢材锈蚀等原因易发生故障,影响罐笼正常运行。目前罐道故障诊断多采用振动检测法,诊断精度易受罐笼载荷、运行速度等工况影响。针对该问题,采用涡流传感器采集罐道故障信号,可使信号... 刚性罐道是立井提升系统的关键部件,由于井筒形变、钢材锈蚀等原因易发生故障,影响罐笼正常运行。目前罐道故障诊断多采用振动检测法,诊断精度易受罐笼载荷、运行速度等工况影响。针对该问题,采用涡流传感器采集罐道故障信号,可使信号特征不受罐笼运行环境影响。为提高罐道故障识别准确率,提出一种基于残差学习和注意力机制的一维卷积神经网络(RA1DCNN)。该网络通过多尺寸卷积并行运算提取多尺度特征,增强了对不同尺度信号特征的感知能力;引入通道注意力模块和空间注意力模块,并融合残差学习机制,设计了残差注意力模块,可同时获取通道和空间信息特征,提取到更具判别性的特征。搭建罐道故障实验平台模拟不同类别及不同严重程度的罐道故障,对RA1DCNN进行消融实验和对比实验,结果表明:RA1DCNN对罐道故障类别的识别准确率达100%,对间隙故障严重程度的平均识别准确率为99.7%,对错位故障严重程度的平均识别准确率为97.68%,验证了多尺度卷积层和残差注意力模块的有效性;整体故障识别准确率为98.05%,优于一维卷积神经网络等对比模型。 展开更多
关键词 立井提升系统 刚性罐道 罐道故障诊断 涡流检测 一维卷积神经网络 多尺度卷积 残差学习 注意力模块
在线阅读 下载PDF
基于改进图神经网络图形样本聚合的增量学习模型
19
作者 刘振柱 侯乔文 +2 位作者 兰媛 于磊 牛蔺楷 《机电工程》 北大核心 2025年第3期549-558,共10页
针对轴向柱塞泵在故障诊断中对大规模、动态变化数据处理困难,以及故障类型增加导致分类性能下降的问题,提出了一种基于改进图神经网络图形样本聚合(Graph-SAGE)的增量学习模型。首先,将轴向柱塞泵的不同故障振动信号构建为带标签的数据... 针对轴向柱塞泵在故障诊断中对大规模、动态变化数据处理困难,以及故障类型增加导致分类性能下降的问题,提出了一种基于改进图神经网络图形样本聚合(Graph-SAGE)的增量学习模型。首先,将轴向柱塞泵的不同故障振动信号构建为带标签的数据集,并通过数据增强生成了新的数据集;然后,采用K-最邻近法(KNN)分别构建了初始训练阶段和增量训练阶段的图结构数据(其中,初始阶段的图结构用于模型的初始训练,增量训练阶段的图结构用于增量训练);接着,为了确定最适合轴向柱塞泵故障图数据集的聚合方法,在初始训练阶段比较了不同聚合器对故障识别准确率的影响,并在增量训练阶段结合显性知识与隐性知识对模型进行了优化;最后,采用了实验的方式,验证了该模型的可行性,并通过对比实验和鲁棒性测试,对该模型的性能和稳定性进行了评估。研究结果表明:该增量学习模型在应对新增故障类型时表现优异,在轴向柱塞泵的复合故障识别中,平均准确率达到了92.35%,显著优于传统图神经网络在相同条件下的表现;同时,该模型在混合工况下的增量训练准确率达到了95%,展现出较强的适应性和鲁棒性。该方法能够有效应对不同的故障模式和工况条件,准确识别轴向柱塞泵的复合故障。 展开更多
关键词 轴向柱塞泵 故障诊断 增量学习 图神经网络图形样本聚合 K-最邻近法 图结构数据
在线阅读 下载PDF
融合多小波分解的深度卷积神经网络轴承故障诊断方法 被引量:7
20
作者 陶唐飞 周文洁 +1 位作者 况佳臣 徐光华 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第5期31-41,共11页
针对卷积神经网络及其与信号降噪预处理集成方法面临高噪声环境和低质量数据挑战时难以有效地提取信号有用特征的问题,提出了一种融合Geronimo-Hardin-Massopust多小波分解的深度卷积神经网络模型(GHMMD-DCNN)。该模型思想是将多小波包... 针对卷积神经网络及其与信号降噪预处理集成方法面临高噪声环境和低质量数据挑战时难以有效地提取信号有用特征的问题,提出了一种融合Geronimo-Hardin-Massopust多小波分解的深度卷积神经网络模型(GHMMD-DCNN)。该模型思想是将多小波包分解与卷积神经网络深度融合,即设计多个一级多小波分解层以提取信号的低频分量和高频分量,再将多个一级多小波分解层与卷积层交替联接,使模型能够多尺度地提取并学习信号有用的时频域信息,信号分解和特征学习交替执行,进而实现强噪声鲁棒特征提取。在不同工况下的航空高速轴承振动数据上进行测试,结果表明:所提模型训练时能够快速达到稳定收敛,并且识别准确率均能达到99.9%以上;提出的方法在强噪声干扰下的故障辨识准确度和识别稳定性均优于对比方法,验证了其优秀的抗噪声干扰能力;在少训练样本测试中,提出的方法在单类训练样本数量为60时的平均诊断准确率高达91.19%,相比于其他方法最低提升了13.19%,验证了GHMMD-DCNN模型具有更优的低样本泛化能力。 展开更多
关键词 多小波分解 卷积神经网络 深度学习 轴承故障诊断
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部