期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LSCDH-YOLOv8轻量化的化工厂火灾检测算法
1
作者 杜强 姜明新 +1 位作者 洪远 王杰 《传感技术学报》 北大核心 2025年第8期1432-1440,共9页
针对当前火灾检测算法对化工场景下的火灾检测漏检、检测精度不高、对小型火焰检测效果较差等问题,提出一种基于LSCDH-YOLOv8轻量化的化工厂火灾检测方法。为了轻量化特征提取网络,将YOLOv8网络中的C2f模块中Bottleneck替换为FasterNet... 针对当前火灾检测算法对化工场景下的火灾检测漏检、检测精度不高、对小型火焰检测效果较差等问题,提出一种基于LSCDH-YOLOv8轻量化的化工厂火灾检测方法。为了轻量化特征提取网络,将YOLOv8网络中的C2f模块中Bottleneck替换为FasterNet模块,并引入了EMA注意力机制,增强有效特征复用的同时降低计算复杂度;将P2层特征图引入到Neck模块中,来提升小目标检测的精度;将原来的边界框回归损失函数CIoU替换为结合了Inner-IoU和SIoU的损失函数Inner-SIoU,来加速网络的收敛;最后,提出四头的LSCDH共享卷积预测头,使得网络结构轻量化的同时提高检测精度。在自制的化工火灾数据集上进行实验比较,实验结果证明:模型大小从8.1 M下降51.8%至3.9 M,模型参数量下降43.4%,平均精度提升了5.6%。实现了在计算量升高不大的同时,提升了火灾检测精度。实现了模型的进一步轻量化,适于低端设备运行。所提出的检测算法基本满足了化工厂火灾检测的需求。 展开更多
关键词 烟火检测 YOLOv8 fasternet_ema LSCDH预测头 Inner-SIoU
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部