期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
改进Faster R-CNN的钢材表面缺陷检测 被引量:1
1
作者 冷岳峰 刘正 +1 位作者 徐宝祎 李志轩 《机械科学与技术》 北大核心 2025年第1期75-83,共9页
钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特... 钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特征融合模块与轻量化通道注意力模块,增加模型对精细特征的捕捉能力。改进模型在NEU-DET数据集上的实验结果显示,最终mAP(Mean average precision,记为m_(AP))值为80.2%,比原始模型提高了12.6%,FPS提高了40.9%。该算法能够有效提升钢材表面缺陷的检测精度,为钢材表面缺陷自动检测提供参考。 展开更多
关键词 缺陷检测 特征融合 通道注意力机制 改进faster R-CNN算法
在线阅读 下载PDF
基于Faster RCNN与Mean-Shift的电缆附件缺陷红外图像自动诊断方法 被引量:25
2
作者 徐小冰 袁婧 +3 位作者 廖雁群 韦亦龙 周承科 周文俊 《高电压技术》 EI CAS CSCD 北大核心 2020年第9期3070-3079,共10页
红外热成像测温是及时发现电缆附件异常发热缺陷的重要方法,但面对海量巡检图像,传统的人工诊断方式费时费力,且过分依赖人工经验。已有研究中为了实现电气设备红外图像的智能诊断,大多提取特定特征量作为所搭建神经网络模型的输入,而... 红外热成像测温是及时发现电缆附件异常发热缺陷的重要方法,但面对海量巡检图像,传统的人工诊断方式费时费力,且过分依赖人工经验。已有研究中为了实现电气设备红外图像的智能诊断,大多提取特定特征量作为所搭建神经网络模型的输入,而所提取的特征量也依赖于人工选择。为此,提出了一种基于Faster RCNN(faster regions with convolutional neural networks features)与Mean-Shift的电缆附件缺陷红外图像自动诊断方法。该方法首先基于Faster RCNN网络实现诊断对象的识别定位;之后利用Mean-Shift聚类算法提取过热区域;最后计算温度参数,并根据相应诊断标准得到诊断结果。利用实际巡检图像进行测试,结果表明:所提方法能够在不同拍摄角度、不同背景下准确定位诊断目标与过热区域,继而实现过热缺陷的自动诊断。研究对于实际工程中电缆附件的缺陷诊断具有一定的参考价值。 展开更多
关键词 电缆附件 红外图像处理 faster RCNN 均值漂移算法 智能状态诊断 过热
在线阅读 下载PDF
基于优化Faster R-CNN算法的金属板材表面缺陷检测 被引量:7
3
作者 孔思曼 周晨阳 +2 位作者 王家华 李林 孙践知 《制造技术与机床》 北大核心 2024年第1期171-178,共8页
传统的图像处理方法对生产过程中各种金属板材表面缺陷检测效率低,难以满足工业生产的需求。为了提高金属板材表面缺陷检测的精度,文章提出了一种基于优化Faster R-CNN算法的金属板材表面缺陷检测方法,以残差网络ResNet50作为主干特征... 传统的图像处理方法对生产过程中各种金属板材表面缺陷检测效率低,难以满足工业生产的需求。为了提高金属板材表面缺陷检测的精度,文章提出了一种基于优化Faster R-CNN算法的金属板材表面缺陷检测方法,以残差网络ResNet50作为主干特征提取网络。首先,融合特征金字塔网络和可变形卷积网络以提高对小目标和不规则性缺陷的检测能力。然后,采用RoI Align和K-means++聚类算法对候选框进行优化,实现缺陷的精准定位。最后,将提出的模型运用在NEU-DET数据集中进行多次实验。实验结果表明,优化后的Faster R-CNN算法在此数据集上的mAP为78.7%,与原始网络相比提高了7.7%,并且其检测性能优于SSD、YOLOv5s和YOLOv7三类目标检测算法。 展开更多
关键词 缺陷检测 faster R-CNN 特征金字塔网络 可变形卷积网络 聚类算法
在线阅读 下载PDF
基于Faster R-CNN算法的变电站设备识别与缺陷检测技术研究 被引量:14
4
作者 于虹 龚泽威一 +2 位作者 张海涛 周帅 于智龙 《电测与仪表》 北大核心 2024年第3期153-159,共7页
变电站作为电力运输的中转站,是城市运转、人民生活的重要基础设施。变电站在运行过程中,经常发生因位置偏僻,不支持机器人或无人机直接进行探测而造成的设备运作温度检测不及时的问题。传统的变电站设备缺陷识别算法是基于机器的学习算... 变电站作为电力运输的中转站,是城市运转、人民生活的重要基础设施。变电站在运行过程中,经常发生因位置偏僻,不支持机器人或无人机直接进行探测而造成的设备运作温度检测不及时的问题。传统的变电站设备缺陷识别算法是基于机器的学习算法,精确度较低,只适合单个设备类别的缺陷检测,易受环境的影响。基于此,文中提出一种识别变电站设备红外缺陷的方法。首先,基于Faster R-CNN算法的设备识别,对6种类型的变电站设备包括套管、绝缘体、电线、电压互感器、避雷针和断路器进行目标识别,以实现设备的精确定位;然后,基于稀疏表示分类(SRC)的算法获得输入样本的实际标签;最后,基于温度阈值判别式算法,在设备区域中识别设备温度的异常缺陷。文中的方法实现了在红外线图像下的设备识别和缺陷检测,运用文中设计的方法对6类设备的红外图像进行检测,准确率达到91.58%,不同类型设备缺陷的平均识别准确率为91.62%,整体缺陷图像的识别准确率达到87.62%。实验结果表明了该方法的有效性和准确性。 展开更多
关键词 变电站设备 缺陷检测 faster R-CNN SRC算法
在线阅读 下载PDF
改进Faster R-CNN的视频SAR动目标检测算法 被引量:2
5
作者 许宜明 李东生 杨浩 《火力与指挥控制》 CSCD 北大核心 2024年第1期124-130,138,共8页
针对当前可用于深度学习的视频SAR数据稀少的现状,以及动目标检测算法中存在较多的漏检和虚警问题,基于美国桑迪亚国家实验室真实视频SAR数据制作深度学习数据集,提出一种改进Faster R-CNN的视频SAR动目标检测算法。算法以截取后的ResNe... 针对当前可用于深度学习的视频SAR数据稀少的现状,以及动目标检测算法中存在较多的漏检和虚警问题,基于美国桑迪亚国家实验室真实视频SAR数据制作深度学习数据集,提出一种改进Faster R-CNN的视频SAR动目标检测算法。算法以截取后的ResNet50为特征提取网络,利用K-means加遗传算法自适应计算锚框,并在数据预处理环节加入S型曲线增强方法,来增强图像的对比度信息。经实验验证,所提出方法能够显著提升动目标检测率和检测速度,其中,平均精度(AP)和F1分数提升均达到10个点以上,有效降低了虚警和漏检,整体表现优于一阶段算法SSD和RetinaNet。 展开更多
关键词 视频SAR 动目标检测 faster R-CNN 图像增强 K-MEANS 遗传算法
在线阅读 下载PDF
基于Faster R-CNN图像处理的变电站异常设备红外检测方法 被引量:13
6
作者 蒋健 刘年 孙超 《沈阳工业大学学报》 CAS 北大核心 2024年第2期157-164,共8页
针对智能变电站内一次设备红外监测图像分析与处理智能化较低的问题,提出了一种基于Faster R-CNN的变电站异常设备红外检测图谱分析方法,并实现了变电站故障设备的智能识别和原因分析。将远程终端单元所采集到的红外图像进行预处理,并... 针对智能变电站内一次设备红外监测图像分析与处理智能化较低的问题,提出了一种基于Faster R-CNN的变电站异常设备红外检测图谱分析方法,并实现了变电站故障设备的智能识别和原因分析。将远程终端单元所采集到的红外图像进行预处理,并对图中的变电站设备进行识别;采用大津算法结合图像灰度值的特殊性对图像进行分割与图像配准;Faster R-CNN则用于对比判断设备是否处于故障状态并分析原因。实验测试结果表明,所提方法对于多种故障设备的识别准确率均在90%以上,具有较优的鲁棒性。 展开更多
关键词 智能变电站 一次设备 故障检测 红外图谱 图像处理 OSTU算法 图像灰度值 faster R-CNN模型
在线阅读 下载PDF
基于Faster R-CNN和图像增强的水下鱼类目标检测方法 被引量:27
7
作者 袁红春 张硕 《大连海洋大学学报》 CAS CSCD 北大核心 2020年第4期612-619,共8页
为了克服水下鱼类图像样本量不足及实现对水下低清晰度图像中鱼类的快速检测,提出了一种基于Faster R-CNN二次迁移学习和带色彩恢复的多尺度视网膜增强算法(MSRCR)的方法,首先通过ImageNet预训练模型对Open Images高清鱼类数据集进行一... 为了克服水下鱼类图像样本量不足及实现对水下低清晰度图像中鱼类的快速检测,提出了一种基于Faster R-CNN二次迁移学习和带色彩恢复的多尺度视网膜增强算法(MSRCR)的方法,首先通过ImageNet预训练模型对Open Images高清鱼类数据集进行一次迁移学习初步训练网络,然后固定检测模型低3层的卷积网络参数,再用水下拍摄的小规模鱼类数据集进行二次迁移学习微调网络,最后通过MSRCR算法对水下拍摄图像进行处理以增强其与高清鱼类图像的相似性,解决水下图像降质问题,让二次迁移学习高效进行。结果表明,该方法利用小规模水下拍摄鱼类数据集训练出的网络查准率可达到98.12%,网络检测能力及后续提升能力优于传统机器学习方法,并能够实现鱼类目标的快速检测,本研究结果可为深海探测作业与海底鱼类等生物资源的监测、保护和可持续开发等工程应用提供一定的参考。 展开更多
关键词 深度学习 鱼类检测 faster R-CNN算法 MSRCR算法 迁移学习
在线阅读 下载PDF
融合引导锚框算法的Faster-RCNN缺陷检测 被引量:3
8
作者 郭兰申 李杨 +1 位作者 黄凤荣 钱法 《机械设计与制造》 北大核心 2022年第4期160-164,共5页
针对传统零件表面缺陷检测方法准确性差效率低,无法满足智能制造需求的问题,提出基于Faster-RCNN深度学习算法的缺陷检测方法。在Faster-RCNN基本算法的基础上,引入引导锚框算法生成anchor方案,解决算法中anchor方案对本次检测的缺陷目... 针对传统零件表面缺陷检测方法准确性差效率低,无法满足智能制造需求的问题,提出基于Faster-RCNN深度学习算法的缺陷检测方法。在Faster-RCNN基本算法的基础上,引入引导锚框算法生成anchor方案,解决算法中anchor方案对本次检测的缺陷目标缺乏针对性、产生大量的冗余区域建议窗口的问题,以提高检测的准确性和效率;通过对比非极大值抑制中不同的IOU阈值对检测结果的影响,确定最优的IOU阈值,并设计零件缺陷样本采集方案,建立三种零件缺陷数据集,在此基础上对方法的有效性进行试验验证。实验结果表明,该方法能够大幅度提高零件表面缺陷检测的准确性和效率,各缺陷检测结果的平均精度可达97.7%以上,平均检测速度达到4.3 fps,满足了智能制造的急迫需求。 展开更多
关键词 表面缺陷检测 卷积神经网络 深度学习 faster-RCNN算法 引导锚框算法
在线阅读 下载PDF
基于Faster R-CNN的榆紫叶甲虫识别方法研究 被引量:6
9
作者 董本志 聂丽郦 +1 位作者 景维鹏 崔航 《计算机工程与应用》 CSCD 北大核心 2018年第23期89-93,108,共6页
针对传统图像识别方法中利用人工设计特征提取模板对昆虫的识别精度不高的问题,提出了基于K-means聚类的深度学习网络模型Faster R-CNN对图像中的目标进行识别。该方法用K-means聚类算法,结合BWP指标对训练数据标签的长宽比值进行聚类,... 针对传统图像识别方法中利用人工设计特征提取模板对昆虫的识别精度不高的问题,提出了基于K-means聚类的深度学习网络模型Faster R-CNN对图像中的目标进行识别。该方法用K-means聚类算法,结合BWP指标对训练数据标签的长宽比值进行聚类,用新的聚类中心点代替标准Faster R-CNN网络中生成初始候选框的长宽比值;对生成初始候选框的尺寸加以改进;将训练数据送入改进后的Faster R-CNN网络进行训练。实验结果表明,在识别具有特定长宽比例的目标时,加入聚类策略的Faster R-CNN网络较标准Faster R-CNN网络有较强的鲁棒性,有效克服了叶片豁口或孔洞造成的冗余现象、榆紫叶甲虫甲壳反光的干扰、相邻的榆紫叶甲虫特征的互相影响和其他与榆紫叶甲虫有相似特征的种类昆虫的干扰。最终达到94.73%的识别精度,较标准网络提高了4.15%。该方法可有效克服传统昆虫检测中特征提取模板的局限性,对识别昆虫这种特征细腻,姿态多样的目标有重要意义。 展开更多
关键词 榆紫叶甲虫 昆虫识别 卷积神经网络 fasterR-CNN 初始候选框调整 K-MEANS聚类算法
在线阅读 下载PDF
改进型Faster R⁃CNN的AGV导航图案目标检测算法 被引量:4
10
作者 张洪涛 田星星 +1 位作者 周意入 秦宇 《现代电子技术》 2022年第13期51-56,共6页
AGV视觉导航定位技术目前大多是在AGV的预设轨道上铺设含目标对象的导航图案,在拍摄到导航图案后先利用目标检测算法检测其目标区域,然后用角点检测算法提取目标区域的参考角点,最后利用参考角点和工业相机的焦距等参数的几何关系计算出... AGV视觉导航定位技术目前大多是在AGV的预设轨道上铺设含目标对象的导航图案,在拍摄到导航图案后先利用目标检测算法检测其目标区域,然后用角点检测算法提取目标区域的参考角点,最后利用参考角点和工业相机的焦距等参数的几何关系计算出AGV的位姿。文中在目标检测算法中经典的Faster R⁃CNN网络模型基础上加以改进,在多层次的feature map上生成候选框且用两个3×3卷积核分别进行卷积运算,从而直接进行分类和回归。仿真测试结果显示:相比Faster R⁃CNN,改进型Faster R⁃CNN检测所设计导航图案的mAP值提高了0.032,FPS值提高了31。因此证明改进型Faster R⁃CNN的精确度和速度均提高了,应用到AGV视觉导航定位技术中可进一步提高该技术的精确度和速度。 展开更多
关键词 目标检测算法 AGV导航图案 改进型faster R⁃CNN 视觉导航 角点提取 AGV位姿计算 候选框生成 卷积运算
在线阅读 下载PDF
融合动态机制的改进型Faster R-CNN识别田间棉花顶芽 被引量:22
11
作者 陈柯屹 朱龙付 +5 位作者 宋鹏 田晓敏 黄成龙 聂新辉 肖爱玲 何良荣 《农业工程学报》 EI CAS CSCD 北大核心 2021年第16期161-168,共8页
针对田间密植环境棉花精准打顶时,棉花顶芽因其小体积特性所带来识别困难问题,该研究提出一种改进型快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)目标检测算法实现大田环境棉花顶芽识别。以Faster ... 针对田间密植环境棉花精准打顶时,棉花顶芽因其小体积特性所带来识别困难问题,该研究提出一种改进型快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)目标检测算法实现大田环境棉花顶芽识别。以Faster R-CNN为基础框架,使用RegNetX-6.4GF作为主干网络,以提高图像特征获取性能。将特征金字塔网络(Feature Pyramid Network,FPN)和导向锚框定位(Guided Anchoring,GA)机制相融合,实现锚框(Anchor)动态自适应生成。通过融合动态区域卷积神经网络(Dynamic Region Convolutional Neural Networks,Dynamic R-CNN),实现训练阶段检测模型自适应候选区域(Proposal)分布的动态变化。最后在目标候选区域(Region of Interest,ROI)中引入目标候选区域提取器(Generic ROI Extractor,GROIE)提高图像特征融合能力。采集自然环境下7种不同棉花总计4819张图片,建立微软常见物体图像识别库2017(Microsoft Common Objects in Context 2017,MS COCO 2017)格式的棉花顶芽图片数据集进行试验。结果表明,该研究提出方法的平均准确率均值(Mean Average Precision,MAP)为98.1%,模型的处理帧速(Frames Per Second,FPS)为10.3帧/s。其MAP在交并比(Intersection Over Union,IOU)为0.5时较Faster R-CNN、RetinaNet、Cascade R-CNN和RepPoints网络分别提高7.3%、78.9%、10.1%和8.3%。该研究算法在田间对于棉花顶芽识别具有较高的鲁棒性和精确度,为棉花精准打顶作业奠定基础。 展开更多
关键词 深度学习 算法 棉花 机制融合 动态适应 顶芽识别 faster R-CNN
在线阅读 下载PDF
面向小目标的多尺度Faster-RCNN检测算法 被引量:101
12
作者 黄继鹏 史颖欢 高阳 《计算机研究与发展》 EI CSCD 北大核心 2019年第2期319-327,共9页
小目标是指图像中覆盖区域较小的一类目标.与常规目标相比,小目标信息量少,训练数据难以标记,这导致通用的目标检测方法对小目标的检测效果不好,而专门为小目标设计的检测方法往往复杂度过高或不具有通用性.在分析现有目标检测方法的基... 小目标是指图像中覆盖区域较小的一类目标.与常规目标相比,小目标信息量少,训练数据难以标记,这导致通用的目标检测方法对小目标的检测效果不好,而专门为小目标设计的检测方法往往复杂度过高或不具有通用性.在分析现有目标检测方法的基础上,提出了一种面向小目标的多尺度快速区域卷积神经网络(faster-regions with convolutional neural network, Faster-RCNN)检测算法.根据卷积神经网络的特性,修改了Faster-RCNN的网络结构,使网络可以同时使用低层和高层的特征进行多尺度目标检测,提升了以低层特征为主要检测依据的小目标检测任务的精度.同时,针对训练数据难以标记的问题,使用从搜索引擎上获取的数据来训练模型.因为这些训练数据与任务测试数据分布不同,又利用下采样和上采样的方法对目标高分辨率的训练图像进行转化,使训练图像和测试图像的特征分布更类似.实验结果表明:所提出的方法在小目标检测任务上的平均精度均值(mean average precision, mAP)可以比原始的Faster-RCNN提高约5%. 展开更多
关键词 小目标检测 faster-RCNN算法 多尺度检测 采样 深度学习
在线阅读 下载PDF
基于改进Faster R-CNN识别深度视频图像哺乳母猪姿态 被引量:52
13
作者 薛月菊 朱勋沐 +7 位作者 郑婵 毛亮 杨阿庆 涂淑琴 黄宁 杨晓帆 陈鹏飞 张南峰 《农业工程学报》 EI CAS CSCD 北大核心 2018年第9期189-196,共8页
猪舍场景下,昼夜交替光线变化、热灯光照影响,及仔猪与母猪的粘连等因素,给全天候哺乳母猪姿态自动识别带来很大困难。该文以深度视频图像为数据源,提出基于改进Faster R-CNN的哺乳母猪姿态识别算法。将残差结构引入ZF网络,设计ZF-D2R网... 猪舍场景下,昼夜交替光线变化、热灯光照影响,及仔猪与母猪的粘连等因素,给全天候哺乳母猪姿态自动识别带来很大困难。该文以深度视频图像为数据源,提出基于改进Faster R-CNN的哺乳母猪姿态识别算法。将残差结构引入ZF网络,设计ZF-D2R网络,以提高识别精度并保持实时性;将Center Loss监督信号引入Faster R-CNN训练中,以增强类内特征的内聚性,提升识别精度。对28栏猪的视频图像抽取站立、坐立、俯卧、腹卧和侧卧5类姿态共计7 541张图像作为训练集,另取5类姿态的5 000张图像作为测试集。该文提出的改进模型在测试集上对哺乳母猪的站立、坐立、俯卧、腹卧和侧卧5类姿态的识别平均准确率分别达到96.73%、94.62%、86.28%、89.57%和99.04%,5类姿态的平均准确率均值达到93.25%。在识别精度上,比ZF网络和层数更深的VGG16网络的平均准确率均值分别提高了3.86和1.24个百分点。识别速度为0.058 s/帧,比VGG16网络速度提高了0.034 s。该文方法在提高识别精度的同时保证了实时性,可为全天候母猪行为识别提供技术参考。 展开更多
关键词 图像识别 算法 模型 faster R-CNN 残差结构 CENTER LOSS 哺乳母猪 姿态识别
在线阅读 下载PDF
一种基于Faster-RCNN的车辆实时检测改进算法 被引量:20
14
作者 杨薇 王洪元 +1 位作者 张继 张中宝 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期231-237,共7页
随着交通愈加发达,道路愈加拥堵,如何实时准确地获取车辆基本信息以便交通部门及时管理特定路段和路口的车辆显得日益重要.对交通视频中车辆的检测和识别,不仅需要实时检测,还要保证其准确性.针对实际情况中车辆之间的遮挡、光照的变化... 随着交通愈加发达,道路愈加拥堵,如何实时准确地获取车辆基本信息以便交通部门及时管理特定路段和路口的车辆显得日益重要.对交通视频中车辆的检测和识别,不仅需要实时检测,还要保证其准确性.针对实际情况中车辆之间的遮挡、光照的变化、阴影、道路旁树枝的晃动、背景中固定对象的移动等因素严重影响检测与识别的精度的问题,提出基于Faster-RCNN(Faster-Regions with CNN features)的车辆实时检测改进算法.首先采用k-means算法对KITTI数据集的目标框进行聚类,得到合适的长宽比,并增加一组尺度(64~2)以适应差异较大的车辆尺寸;然后改进区域提案网络,降低计算量,优化网络结构;最后在训练阶段采用多尺度策略,降低漏检率,提高精确率.实验结果表明:改进后的车辆检测算法的mAP(mean Average Precision)达到了82.20%,检测速率为每张照片耗时0.03875 s,基本能够满足车辆实时检测的需求. 展开更多
关键词 车辆实时检测 faster-RCNN K-MEANS算法 区域提案网络 多尺度训练
在线阅读 下载PDF
基于改进的Faster R-CNN算法的机械零件图像识别 被引量:12
15
作者 郭斐 靳伍银 王猛 《机械设计》 CSCD 北大核心 2019年第9期113-116,共4页
在传统的Faster R-CNN网络结构中减少原有的卷积层数,同时加入Inception结构层,提出一种基于Faster RCNN的零件识别的改进算法。该算法在保证不增加网络参数和计算量的前提下,增加深度和网络结构复杂度,进一步有效地提取图像的特征。结... 在传统的Faster R-CNN网络结构中减少原有的卷积层数,同时加入Inception结构层,提出一种基于Faster RCNN的零件识别的改进算法。该算法在保证不增加网络参数和计算量的前提下,增加深度和网络结构复杂度,进一步有效地提取图像的特征。结果表明:通过自制机械零件图像数据集,将传统Faster R-CNN与改进后的Faster R-CNN算法均成功应用于机械零件图像识别。与传统Faster R-CNN相比,基于改进后的Faster R-CNN深度学习算法识别机械零件的识别精度和准确度均更高。 展开更多
关键词 faster R-CNN算法 机械零件图像识别 Inception结构
在线阅读 下载PDF
改进的Faster R-CNN网络预测尺度参数 被引量:4
16
作者 王婷婷 苍岩 +1 位作者 毕晓君 何恒翔 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2021年第3期426-432,共7页
为了研究基于深度学习的多任务分类和回归问题,本文改进了Faster RCNN网络,提出了同时实现分类和回归分支的深层神经网络。以Faster R-CNN算法为基础,通过增加网络分支的方式,将分类和回归网络并入同一个网络,实现端对端的目标识别、定... 为了研究基于深度学习的多任务分类和回归问题,本文改进了Faster RCNN网络,提出了同时实现分类和回归分支的深层神经网络。以Faster R-CNN算法为基础,通过增加网络分支的方式,将分类和回归网络并入同一个网络,实现端对端的目标识别、定位和参数测量多个任务并行处理。使用整体交替训练的方式优化网络参数。基于智慧农业应用背景,利用生猪的体型特征与体重参数之间的相关性,实现了通过生猪体型图像预测生猪体重参数的任务。实际场景中利用该网络完成了生猪体重参数预测,预测误差0.374%。 展开更多
关键词 深度学习 faster R-CNN算法 无接触测重 目标参数测量 交替训练 分类 回归 体重预测
在线阅读 下载PDF
基于改进的三向流Faster R-CNN的篡改图像识别 被引量:4
17
作者 徐代 岳璋 +1 位作者 杨文霞 任潇 《计算机应用》 CSCD 北大核心 2020年第5期1315-1321,共7页
为了进一步提高对拼接、缩放旋转、复制粘贴三种主要篡改手段的识别准确率,增强算法普适性,提出了一个基于三向流特征提取的卷积神经网络篡改图像识别系统。首先,分别根据图像局部彩色不变量特性比较特征子块相似度,根据噪声相关性比较... 为了进一步提高对拼接、缩放旋转、复制粘贴三种主要篡改手段的识别准确率,增强算法普适性,提出了一个基于三向流特征提取的卷积神经网络篡改图像识别系统。首先,分别根据图像局部彩色不变量特性比较特征子块相似度,根据噪声相关性比较篡改区域边缘的噪声相关系数,以及根据图像重采样痕迹计算子块标准偏差对比度,完成了对图像RGB流、噪声流和信号流的特征提取;然后,通过多线性池化,结合改进的分段AdaGrad梯度算法,实现了特征降维和参数自适应更新;最后,通过网络训练和分类,完成了对拼接、缩放旋转、复制粘贴这三种主要的图像篡改手段的识别与相应的篡改区域的定位。为衡量所提模型的效果,在VOC2007和CIFAR-10两个数据集上进行了实验。在约9000张图像上的实验结果表明,该模型对拼接、缩放旋转、复制粘贴这三种篡改手段均能进行较准确的识别与定位,识别率分别为0.962、0.956和0.935。与对照文献的双向流特征提取方法相比,该模型的识别率分别提高了1.050%、2.137%、2.860%。三向流特征提取模型丰富了卷积神经网络对图像的特征信息采集,提高了网络的学习性能与识别精度,同时改进的梯度算法通过分段控制参数学习率的下降速度,降低了过拟合,减少了收敛震荡,提高了收降速度,实现了算法的优化设计。 展开更多
关键词 深度学习 篡改图像识别 faster R-CNN 三向流特征提取 梯度算法
在线阅读 下载PDF
基于改进Faster R-CNN的无人机航拍图像目标检测 被引量:5
18
作者 陈丁 吉哲 《海洋测绘》 CSCD 2019年第5期51-55,共5页
无人机航拍图像中目标检测问题要求检测模型具有旋转不变性。针对这一问题,提出改进的 Faster R-CNN 算法。首先在区域建议网络中采用 K-means 聚类方法生成适应数据集的预设锚点框,其次在 Fast R-CNN网络中引入新的特征提取层,并在模... 无人机航拍图像中目标检测问题要求检测模型具有旋转不变性。针对这一问题,提出改进的 Faster R-CNN 算法。首先在区域建议网络中采用 K-means 聚类方法生成适应数据集的预设锚点框,其次在 Fast R-CNN网络中引入新的特征提取层,并在模型多任务损失函数中增加旋转约束条件,为后续检测学习旋转不敏感特征。在人工采集的数据集上进行了对比实验,结果表明:在检测速度无明显降低的情况下,改进方法的检测精度提升了1. 6%mAP,算法检测性能较优,更能满足实际应用需求。 展开更多
关键词 无人机图像 目标检测 faster R-CNN 算法 K-MEANS 聚类 旋转不敏感
在线阅读 下载PDF
综合应用Faster R-CNN和U-net的心脏MRI图像分割 被引量:2
19
作者 韩俊玲 李博 +3 位作者 康晓东 杨靖怡 刘汉卿 王笑天 《计算机科学》 CSCD 北大核心 2023年第S01期303-311,共9页
为解决现有MRI神经网络分割中存在因输入端图像信息多样导致分割精度下降的问题,提出了引入Faster R-CNN和U-net机制的MRI图像分割方法。选择公开心脏MRI分割挑战赛数据集ACDC和SCD,清洗和修改数据集格式后送入后续神经网络。首先,应用F... 为解决现有MRI神经网络分割中存在因输入端图像信息多样导致分割精度下降的问题,提出了引入Faster R-CNN和U-net机制的MRI图像分割方法。选择公开心脏MRI分割挑战赛数据集ACDC和SCD,清洗和修改数据集格式后送入后续神经网络。首先,应用Faster R-CNN对目标图像进行检测,以对原始输入图像进行预处理,并去掉冗杂的背景信息。其次,对预处理后的图像进行U-net分割,同时为检验引入Faster R-CNN后,对分割网络的性能和精度是否提高,采用了消融实验和对比实验。消融实验去掉了U-net分割网络中的检测裁剪模块,选择U-net及其改进网络分别做一组消融实验结果。实验结果表明,新方法的平均交并比和Dice系数在ACDC数据集上为0.89和0.94,分别提高了7.3%和5%,在SCD数据集上为0.96和0.98,分别提高了5%和3%,实现了MRI图像的自动预处理和分割。 展开更多
关键词 U-net faster R-CNN MRI 分割算法 深度学习
在线阅读 下载PDF
Multi-scale traffic vehicle detection based on faster ReCNN with NAS optimization and feature enrichment 被引量:19
20
作者 Ji-qing Luo Hu-sheng Fang +2 位作者 Fa-ming Shao Yue Zhong Xia Hua 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1542-1554,共13页
It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively dif... It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively difficult to detect vehicles of various scales in traffic scene images,because the vehicles partially obscured by green belts,roadblocks or other vehicles,as well as influence of some low illumination weather.In this paper,we present a model based on Faster ReCNN with NAS optimization and feature enrichment to realize the effective detection of multi-scale vehicle targets in traffic scenes.First,we proposed a Retinex-based image adaptive correction algorithm(RIAC)to enhance the traffic images in the dataset to reduce the influence of shadow and illumination,and improve the image quality.Second,in order to improve the feature expression of the backbone network,we conducted Neural Architecture Search(NAS)on the backbone network used for feature extraction of Faster ReCNN to generate the optimal cross-layer connection to extract multi-layer features more effectively.Third,we used the object Feature Enrichment that combines the multi-layer feature information and the context information of the last layer after cross-layer connection to enrich the information of vehicle targets,and improve the robustness of the model for challenging targets such as small scale and severe occlusion.In the implementation of the model,K-means clustering algorithm was used to select the suitable anchor size for our dataset to improve the convergence speed of the model.Our model has been trained and tested on the UN-DETRAC dataset,and the obtained results indicate that our method has art-of-state detection performance. 展开更多
关键词 Neural architecture search Feature enrichment faster R-CNN Retinex-based image adaptive correction algorithm K-MEANS UN-DETRAC
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部