针对小目标水漂垃圾形态多变、分辨率低且信息有限,导致检测效果不理想的问题,提出一种改进的Faster-RCNN(Faster Regions with Convolutional Neural Network)水漂垃圾检测算法MP-Faster-RCNN(Faster-RCNN with Multi-scale feature an...针对小目标水漂垃圾形态多变、分辨率低且信息有限,导致检测效果不理想的问题,提出一种改进的Faster-RCNN(Faster Regions with Convolutional Neural Network)水漂垃圾检测算法MP-Faster-RCNN(Faster-RCNN with Multi-scale feature and Polarized self-attention)。首先,建立黄河兰州段小目标水漂垃圾数据集,将空洞卷积结合ResNet-50代替原来的VGG-16(Visual Geometry Group 16)作为主干特征提取网络,扩大感受野以提取更多小目标特征;其次,在区域生成网络(RPN)利用多尺度特征,设置3×3和1×1的两层卷积,补偿单一滑动窗口造成的特征丢失;最后,在RPN前加入极化自注意力,进一步利用多尺度和通道特征提取更细粒度的多尺度空间信息和通道间依赖关系,生成具有全局特征的特征图,实现更精确的目标框定位。实验结果表明,MP-Faster-RCNN能有效提高水漂垃圾检测精度,与原始Faster-RCNN相比,平均精度均值(mAP)提高了6.37个百分点,模型大小从521 MB降到了108 MB,且在同一训练批次下收敛更快。展开更多
为实现在自然环境条件下对苦瓜叶部病害的目标检测,该研究提出了一种基于改进的更快速区域卷积神经网络(Faster Region with Convolutional Neural Network Features,Faster R-CNN)的苦瓜叶部病害目标检测方法。Faster R-CNN以残差结构...为实现在自然环境条件下对苦瓜叶部病害的目标检测,该研究提出了一种基于改进的更快速区域卷积神经网络(Faster Region with Convolutional Neural Network Features,Faster R-CNN)的苦瓜叶部病害目标检测方法。Faster R-CNN以残差结构卷积神经网络ResNet-50作为该次试验的特征提取网络,将其所得特征图输入到区域建议网络提取区域建议框,并且结合苦瓜叶部病害尺寸小的特点,对原始的Faster R-CNN进行修改,增加区域建议框的尺寸个数,并在ResNet-50的基础下融入了特征金字塔网络(Feature Pyramid Networks,FPN)。结果表明,该方法训练所得的深度学习网络模型具有良好的鲁棒性,平均精度均值(Mean Average Precision,MAP)值为78.85%;融入特征金字塔网络后,所得模型的平均精度均值为86.39%,提高了7.54%,苦瓜健康叶片、白粉病、灰斑病、蔓枯病、斑点病的平均精确率(Average Precision,AP)分别为89.24%、81.48%、83.31%、88.62%和89.28%,在灰斑病检测精度上比之前可提高了16.56%,每幅图像的检测时间达0.322 s,保证检测的实时性。该方法对复杂的自然环境下的苦瓜叶部病害检测具有较好的鲁棒性和较高的精度,对瓜果类疾病预防有重要的研究意义。展开更多
文摘针对小目标水漂垃圾形态多变、分辨率低且信息有限,导致检测效果不理想的问题,提出一种改进的Faster-RCNN(Faster Regions with Convolutional Neural Network)水漂垃圾检测算法MP-Faster-RCNN(Faster-RCNN with Multi-scale feature and Polarized self-attention)。首先,建立黄河兰州段小目标水漂垃圾数据集,将空洞卷积结合ResNet-50代替原来的VGG-16(Visual Geometry Group 16)作为主干特征提取网络,扩大感受野以提取更多小目标特征;其次,在区域生成网络(RPN)利用多尺度特征,设置3×3和1×1的两层卷积,补偿单一滑动窗口造成的特征丢失;最后,在RPN前加入极化自注意力,进一步利用多尺度和通道特征提取更细粒度的多尺度空间信息和通道间依赖关系,生成具有全局特征的特征图,实现更精确的目标框定位。实验结果表明,MP-Faster-RCNN能有效提高水漂垃圾检测精度,与原始Faster-RCNN相比,平均精度均值(mAP)提高了6.37个百分点,模型大小从521 MB降到了108 MB,且在同一训练批次下收敛更快。