期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
基于改进Faster R-CNN与U-Net算法的桥梁病害识别与量化方法 被引量:6
1
作者 乔朋 梁志强 +3 位作者 段长江 马晨 王思龙 狄谨 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期627-638,共12页
为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,... 为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,提出ResNet34结合U-Net的裂缝形态提取方法,并结合裂缝形态学研究了裂缝像素宽度和长度的确定方法.结果表明:锚框优化设计可改进Faster R-CNN算法的表观病害识别效果,5类常见病害的预测准确率、召回率、平均精确率分别由68.40%、69.87%、74.64%提升到85.40%、83.59%、83.72%;利用病害预测框,结合改进U-Net算法的裂缝像素尺寸计算,可实现裂缝病害尺寸的自动测量;基于改进Faster R-CNN和改进U-Net的方法可实现混凝土桥梁常见病害的智能识别和尺寸量化,从而提高桥梁病害检测效率并促进桥梁技术状况评定的智能化. 展开更多
关键词 桥梁工程 表观病害识别 裂缝尺寸确定 改进faster r-cnn 改进U-Net
在线阅读 下载PDF
基于改进Faster R-CNN的变电站设备外部缺陷检测 被引量:7
2
作者 张铭泉 邢福德 刘冬 《智能系统学报》 CSCD 北大核心 2024年第2期290-298,共9页
针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-C... 针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-CNN(faster region-based convolutional network)算法,但其对小目标物体和设备渗漏油的检测精度仍有提升空间,为此设计一种基于Faster R-CNN的改进算法。改进算法通过对输入图像进行数据增强,在网络中添加SPP(spatial pyramid pooling)结构以及改进特征融合方式,对分类以及边界框回归损失函数进行改进的方式来提高缺陷的检测精度。与原Faster R-CNN算法进行对比,改进算法在变电站设备缺陷目标检测数据集的检测结果中AP(average precision)(0.5∶0.95)提高了2.7个百分点,AP(0.5)提高了4.3个百分点,对小目标物体的检测精度也提高了1.8个百分点,试验结果验证了该方法的有效性。 展开更多
关键词 变电站设备外部缺陷 深度学习 目标检测 卷积神经网络 faster r-cnn 特征提取 特征融合金字塔结构 损失函数
在线阅读 下载PDF
基于改进Faster-RCNN的起重机钢丝绳表面缺陷识别方法
3
作者 苏立鹏 娄益凡 +3 位作者 杨吴奔 高建貌 王雪迎 易灿灿 《机电工程》 北大核心 2025年第7期1341-1349,共9页
针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识... 针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识别的性能。首先,采用了多尺度策略提高输入图像的分辨率,从而更好地检测不同大小的缺陷;其次,在网络中引入了可变形卷积,以增强其捕捉传统卷积技术难以检测的钢丝绳缺陷复杂形状特征的能力;采用了路径增强技术融合低维和高维特征,有效解决了在下采样和特征融合过程中信息丢失的问题,极大提升了模型在各层之间保持关键信息的能力;最后,采用了广义交并比(GIOU)损失函数替代传统的交并比(IOU)损失函数,显著提高了边界框预测的准确性,验证了改进后的Faster-RCNN算法在起重机钢丝绳损伤检测的性能提升方面较为显著。研究结果表明:改进版Faster-RCNN模型相比原算法在精度上有了显著提高,准确率从81.8%提升至90.2%,召回率从83.8%提高至94.2%,最终平均精度达到0.934,提升了9.6%。与传统检测算法如SSD和原版YOLOv5相比,该方法的准确率分别提高了17.6%和11.0%,证明了其在钢丝绳损伤图像识别中的有效性。 展开更多
关键词 起重机械 损伤检测 改进的快速区域卷积神经网络 多尺度和自定义锚框策略 广义交并比损失函数 可变形卷积 路径增强特征金字塔 区域提议网络 消融实验
在线阅读 下载PDF
多尺度特征和极化自注意力的Faster-RCNN水漂垃圾识别 被引量:1
4
作者 蒋占军 吴佰靖 +1 位作者 马龙 廉敬 《计算机应用》 CSCD 北大核心 2024年第3期938-944,共7页
针对小目标水漂垃圾形态多变、分辨率低且信息有限,导致检测效果不理想的问题,提出一种改进的Faster-RCNN(Faster Regions with Convolutional Neural Network)水漂垃圾检测算法MP-Faster-RCNN(Faster-RCNN with Multi-scale feature an... 针对小目标水漂垃圾形态多变、分辨率低且信息有限,导致检测效果不理想的问题,提出一种改进的Faster-RCNN(Faster Regions with Convolutional Neural Network)水漂垃圾检测算法MP-Faster-RCNN(Faster-RCNN with Multi-scale feature and Polarized self-attention)。首先,建立黄河兰州段小目标水漂垃圾数据集,将空洞卷积结合ResNet-50代替原来的VGG-16(Visual Geometry Group 16)作为主干特征提取网络,扩大感受野以提取更多小目标特征;其次,在区域生成网络(RPN)利用多尺度特征,设置3×3和1×1的两层卷积,补偿单一滑动窗口造成的特征丢失;最后,在RPN前加入极化自注意力,进一步利用多尺度和通道特征提取更细粒度的多尺度空间信息和通道间依赖关系,生成具有全局特征的特征图,实现更精确的目标框定位。实验结果表明,MP-Faster-RCNN能有效提高水漂垃圾检测精度,与原始Faster-RCNN相比,平均精度均值(mAP)提高了6.37个百分点,模型大小从521 MB降到了108 MB,且在同一训练批次下收敛更快。 展开更多
关键词 目标检测 水漂垃圾 faster-RCNN 空洞卷积 多尺度特征融合 极化自注意力
在线阅读 下载PDF
基于Faster R-CNN的田间西兰花幼苗图像检测方法 被引量:51
5
作者 孙哲 张春龙 +3 位作者 葛鲁镇 张铭 李伟 谭豫之 《农业机械学报》 EI CAS CSCD 北大核心 2019年第7期216-221,共6页
为解决自然环境下作物识别率不高、鲁棒性不强等问题,以西兰花幼苗为研究对象,提出了一种基于Faster R-CNN模型的作物检测方法。根据田间环境特点,采集不同光照强度、不同地面含水率和不同杂草密度下的西兰花幼苗图像,以确保样本多样性... 为解决自然环境下作物识别率不高、鲁棒性不强等问题,以西兰花幼苗为研究对象,提出了一种基于Faster R-CNN模型的作物检测方法。根据田间环境特点,采集不同光照强度、不同地面含水率和不同杂草密度下的西兰花幼苗图像,以确保样本多样性,并通过数据增强手段扩大样本量,制作PASCAL VOC格式数据集。针对此数据集训练Faster R-CNN模型,通过设计ResNet101、ResNet50与VGG16网络的对比试验,确定ResNet101网络为最优特征提取网络,其平均精度为90.89%,平均检测时间249 ms。在此基础上优化网络超参数,确定Dropout值为0.6时,模型识别效果最佳,其平均精度达到91.73%。结果表明,本文方法能够对自然环境下的西兰花幼苗进行有效检测,可为农业智能除草作业中的作物识别提供借鉴。 展开更多
关键词 西兰花幼苗 作物识别 深度学习 卷积神经网络 fasterr-cnn
在线阅读 下载PDF
改进Faster R-CNN的田间苦瓜叶部病害检测 被引量:67
6
作者 李就好 林乐坚 +1 位作者 田凯 Al Aasmi Alaa 《农业工程学报》 EI CAS CSCD 北大核心 2020年第12期179-185,共7页
为实现在自然环境条件下对苦瓜叶部病害的目标检测,该研究提出了一种基于改进的更快速区域卷积神经网络(Faster Region with Convolutional Neural Network Features,Faster R-CNN)的苦瓜叶部病害目标检测方法。Faster R-CNN以残差结构... 为实现在自然环境条件下对苦瓜叶部病害的目标检测,该研究提出了一种基于改进的更快速区域卷积神经网络(Faster Region with Convolutional Neural Network Features,Faster R-CNN)的苦瓜叶部病害目标检测方法。Faster R-CNN以残差结构卷积神经网络ResNet-50作为该次试验的特征提取网络,将其所得特征图输入到区域建议网络提取区域建议框,并且结合苦瓜叶部病害尺寸小的特点,对原始的Faster R-CNN进行修改,增加区域建议框的尺寸个数,并在ResNet-50的基础下融入了特征金字塔网络(Feature Pyramid Networks,FPN)。结果表明,该方法训练所得的深度学习网络模型具有良好的鲁棒性,平均精度均值(Mean Average Precision,MAP)值为78.85%;融入特征金字塔网络后,所得模型的平均精度均值为86.39%,提高了7.54%,苦瓜健康叶片、白粉病、灰斑病、蔓枯病、斑点病的平均精确率(Average Precision,AP)分别为89.24%、81.48%、83.31%、88.62%和89.28%,在灰斑病检测精度上比之前可提高了16.56%,每幅图像的检测时间达0.322 s,保证检测的实时性。该方法对复杂的自然环境下的苦瓜叶部病害检测具有较好的鲁棒性和较高的精度,对瓜果类疾病预防有重要的研究意义。 展开更多
关键词 卷积神经网络 机器视觉 病害 自动检测 faster r-cnn 苦瓜 特征金字塔网络
在线阅读 下载PDF
基于Faster R-CNN的航拍图像中绝缘子识别 被引量:31
7
作者 程海燕 翟永杰 陈瑞 《现代电子技术》 北大核心 2019年第2期98-102,共5页
为了解决传统绝缘子识别方法存在适用性不强、识别效率低的问题,结合深度卷积神经网络思想,提出一种从电网巡检航拍图像中自动识别绝缘子的方法。应用Faster R-CNN框架,结合电网巡检航拍图像数据库,构建绝缘子识别系统,自动识别航拍图... 为了解决传统绝缘子识别方法存在适用性不强、识别效率低的问题,结合深度卷积神经网络思想,提出一种从电网巡检航拍图像中自动识别绝缘子的方法。应用Faster R-CNN框架,结合电网巡检航拍图像数据库,构建绝缘子识别系统,自动识别航拍图像中的绝缘子,并分析不同模型和参数对识别精确度的影响。实验结果表明,相比于传统航拍绝缘子识别方法,采用深度卷积神经网络对航拍绝缘子进行学习和识别,具有较高的识别准确率和效率,可以很好地识别各种类型的绝缘子,识别性能大幅度提高。 展开更多
关键词 卷积神经网络 深度学习 faster r-cnn 航拍图像 绝缘子识别 智能电网
在线阅读 下载PDF
基于Faster R-CNN的新疆棉花幼苗与杂草识别方法 被引量:7
8
作者 许燕 温德圣 +2 位作者 周建平 樊湘鹏 刘洋 《排灌机械工程学报》 CSCD 北大核心 2021年第6期602-607,共6页
针对新疆棉田杂草的伴生特点带来的特征过拟合、精确率低等问题,以新疆棉花幼苗与杂草为研究对象,分析杂草识别率低的影响因素,建立了基于Faster R-CNN的网络识别模型.采集不同角度、不同自然环境和不同密集程度混合生长的棉花幼苗与杂... 针对新疆棉田杂草的伴生特点带来的特征过拟合、精确率低等问题,以新疆棉花幼苗与杂草为研究对象,分析杂草识别率低的影响因素,建立了基于Faster R-CNN的网络识别模型.采集不同角度、不同自然环境和不同密集程度混合生长的棉花幼苗与杂草图像5370张.为确保样本质量以及多样性,利用颜色迁移和数据增强来提高图像的颜色特征与扩大样本量,以PASCAL VOC格式数据集进行网络模型训练.通过综合对比VGG16,VGG19,ResNet50和ResNet101这4种网络的识别时间与精度,选择VGG16网络训练Faster R-CNN模型.在此基础上设计了纵横比为1∶1的最佳锚尺度,在该模型下对新疆棉花幼苗与杂草进行识别,实现91.49%的平均识别精度,平均识别时间262 ms.研究结果为农业智能精确除草装备的研发提供了参考. 展开更多
关键词 新疆棉花苗期 杂草识别 卷积神经网络 faster r-cnn
在线阅读 下载PDF
基于改进Faster R-CNN的无人机视频车辆自动检测 被引量:10
9
作者 彭博 蔡晓禹 +2 位作者 唐聚 谢济铭 张媛媛 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第6期1199-1204,共6页
为了从广域视角准确提取道路交通信息,提出了一种用于无人机视频车辆自动识别的改进Faster R-CNN模型.该模型以基于ZF网络的Faster R-CNN为原型,优化调整学习策略、训练图像尺寸、学习率等模型参数,调整RPN网络卷积核并引入SoftNMS算法... 为了从广域视角准确提取道路交通信息,提出了一种用于无人机视频车辆自动识别的改进Faster R-CNN模型.该模型以基于ZF网络的Faster R-CNN为原型,优化调整学习策略、训练图像尺寸、学习率等模型参数,调整RPN网络卷积核并引入SoftNMS算法,增加1~3个特征提取卷积层和激活层.基于无人机交通视频构建了训练图像集,对现有Faster R-CNN模型及改进模型进行训练和测试.结果显示,与采用Step学习策略的模型相比,采用学习策略Inv的模型车辆识别平均准确率提高了0.4%~9.4%.引入SoftNMS算法的模型比引入前的模型平均准确率提高了0.1%~7.9%.提出的改进模型平均准确率为94.6%,较基于ZF的Faster R-CNN模型、基于VGGM的Faster R-CNN模型和基于VGG16的Faster R-CNN模型分别提高了13.1%、13.1%和4.1%,且训练时间减少约3%,对多种场景的视频车辆检测具有较好的适用性. 展开更多
关键词 智能交通 车辆检测 深度学习 无人机视频 faster r-cnn
在线阅读 下载PDF
基于改进Faster R-CNN的铁路客车螺栓检测研究 被引量:15
10
作者 赵江平 徐恒 党悦悦 《中国安全科学学报》 CSCD 北大核心 2021年第7期82-89,共8页
为确保铁路客车运行安全,提出一种基于快速区域卷积神经网络(Faster R-CNN)目标检测的客车关键部件图像缺陷检测算法,针对算法在小尺度螺栓检测方面存在的问题提出2点改进,首先,结合深度残差网络和Inception网络两者优点替换原VGG16网络... 为确保铁路客车运行安全,提出一种基于快速区域卷积神经网络(Faster R-CNN)目标检测的客车关键部件图像缺陷检测算法,针对算法在小尺度螺栓检测方面存在的问题提出2点改进,首先,结合深度残差网络和Inception网络两者优点替换原VGG16网络,并增加上采样层,解决图像经过卷积网络特征信息流失严重的问题;其次,通过K-means++聚类算法优化区域建议网络(RPN)中锚点的尺寸和比例,提高生成建议区域的精确性,解决缺陷目标定位不准确的问题;最后,用创建的螺栓缺陷数据集进行对比验证。结果表明:改进后的算法检测准确率可达87.4%,相较原算法提高8.9%,且对于多目标缺陷与混淆目标,漏检率与误检率分别降低9.9%和11%。 展开更多
关键词 铁路客车 缺陷图像 目标检测 faster r-cnn K-means++
在线阅读 下载PDF
基于Faster R-CNN的除草机器人杂草识别算法 被引量:25
11
作者 李春明 逯杉婷 +1 位作者 远松灵 王震洲 《中国农机化学报》 北大核心 2019年第12期171-176,共6页
针对当前除草机器人杂草识别定位不准确、实时性差等问题,提出一种基于Faster R-CNN的草坪杂草识别算法。该方法首先使用快速区域卷积神经网络(Faster R-CNN)算法训练初始化模型,然后通过在网络池化层后添加生成对抗网络(GAN)噪声层来... 针对当前除草机器人杂草识别定位不准确、实时性差等问题,提出一种基于Faster R-CNN的草坪杂草识别算法。该方法首先使用快速区域卷积神经网络(Faster R-CNN)算法训练初始化模型,然后通过在网络池化层后添加生成对抗网络(GAN)噪声层来提高网络的鲁棒性。试验结果表明,该种方法在正常拍摄的测试集图片中识别率达到97.05%,在加噪图片测试集的识别率达到95.15%,识别结果均优于传统的机器学习方法。同时,本方法具有识别速度快的特点,可用于实时检测,在园林杂草清理等方面具有应用价值。 展开更多
关键词 杂草识别 深度学习 快速区域卷积神经网络 区域建议网络 生成对抗网络
在线阅读 下载PDF
基于Faster R-CNN的榆紫叶甲虫识别方法研究 被引量:6
12
作者 董本志 聂丽郦 +1 位作者 景维鹏 崔航 《计算机工程与应用》 CSCD 北大核心 2018年第23期89-93,108,共6页
针对传统图像识别方法中利用人工设计特征提取模板对昆虫的识别精度不高的问题,提出了基于K-means聚类的深度学习网络模型Faster R-CNN对图像中的目标进行识别。该方法用K-means聚类算法,结合BWP指标对训练数据标签的长宽比值进行聚类,... 针对传统图像识别方法中利用人工设计特征提取模板对昆虫的识别精度不高的问题,提出了基于K-means聚类的深度学习网络模型Faster R-CNN对图像中的目标进行识别。该方法用K-means聚类算法,结合BWP指标对训练数据标签的长宽比值进行聚类,用新的聚类中心点代替标准Faster R-CNN网络中生成初始候选框的长宽比值;对生成初始候选框的尺寸加以改进;将训练数据送入改进后的Faster R-CNN网络进行训练。实验结果表明,在识别具有特定长宽比例的目标时,加入聚类策略的Faster R-CNN网络较标准Faster R-CNN网络有较强的鲁棒性,有效克服了叶片豁口或孔洞造成的冗余现象、榆紫叶甲虫甲壳反光的干扰、相邻的榆紫叶甲虫特征的互相影响和其他与榆紫叶甲虫有相似特征的种类昆虫的干扰。最终达到94.73%的识别精度,较标准网络提高了4.15%。该方法可有效克服传统昆虫检测中特征提取模板的局限性,对识别昆虫这种特征细腻,姿态多样的目标有重要意义。 展开更多
关键词 榆紫叶甲虫 昆虫识别 卷积神经网络 fasterr-cnn 初始候选框调整 K-MEANS聚类算法
在线阅读 下载PDF
基于Faster R-CNN网络模型的铁路异物侵限检测算法研究 被引量:51
13
作者 徐岩 陶慧青 虎丽丽 《铁道学报》 EI CAS CSCD 北大核心 2020年第5期91-98,共8页
行人和车辆等异物侵入铁路周边限界内的情况严重威胁了行人自身安全及铁路行车安全。针对传统铁路异物检测算法识别精度不高、分类不明确和结果易受外界环境影响等缺点,提出了一种基于Faster R-CNN网络模型的铁路异物侵限检测算法,并对... 行人和车辆等异物侵入铁路周边限界内的情况严重威胁了行人自身安全及铁路行车安全。针对传统铁路异物检测算法识别精度不高、分类不明确和结果易受外界环境影响等缺点,提出了一种基于Faster R-CNN网络模型的铁路异物侵限检测算法,并对该模型做适应性改进以满足铁路异物检测的现实需要。提出将全连接层用全局平均池化层替代来减少参数量;通过增加锚点个数来提高对目标区域建议的精确性;引入迁移学习思想训练网络以解决铁路异物侵限数据匮乏问题。在铁路异物侵限视频数据集上进行测试表明,本算法对于人、车及部分动物的综合检测精确度达到了97.81%。 展开更多
关键词 铁路异物检测 卷积神经网络 faster r-cnn 迁移学习 全局平均池化
在线阅读 下载PDF
基于改进Faster R-CNN的钢轨踏面块状伤损检测方法 被引量:4
14
作者 罗晖 贾晨 +1 位作者 芦春雨 李健 《计算机应用》 CSCD 北大核心 2021年第3期904-910,共7页
针对钢轨踏面块状伤损存在的尺度变化大、样本数据集小的问题,提出了基于改进Faster R-CNN的钢轨踏面块状伤损检测方法。首先,基于ResNet-101基础网络结构来构建多尺度特征金字塔(FPN),以实现深、浅层特征信息的融合,从而提高了小尺度... 针对钢轨踏面块状伤损存在的尺度变化大、样本数据集小的问题,提出了基于改进Faster R-CNN的钢轨踏面块状伤损检测方法。首先,基于ResNet-101基础网络结构来构建多尺度特征金字塔(FPN),以实现深、浅层特征信息的融合,从而提高了小尺度伤损的检测精度;然后,采用广义交并比(GIoU)损失解决了Faster R-CNN中回归损失SmoothL1对预测边框位置不敏感问题;最后,提出引导锚定的区域提名网络(GA-RPN)方法,从而解决了区域生成网络(RPN)生成的锚点大量冗余而导致的检测网络训练中正负样本失衡问题。训练过程中,基于翻转、裁剪、噪声扰动等图像预处理方法对RSSDs数据集进行扩充,解决了钢轨踏面块状伤损训练样本不充足问题。实验结果表明,所提改进方法对钢轨踏面块状伤损检测的平均精度均值(mAP)可达到82.466%,相较于Faster R-CNN提高了13.201个百分点,能够更加准确地检测钢轨踏面块状伤损。 展开更多
关键词 钢轨踏面 块状伤损检测 faster区域卷积神经网络 特征金字塔 广义交并比 区域建议网络
在线阅读 下载PDF
基于Faster R-CNN的密集人群检测算法 被引量:4
15
作者 邹斌 张聪 《计算机应用》 CSCD 北大核心 2023年第1期61-66,共6页
为提高拥挤场景下的人群检测准确率,提出一种基于改进Faster R-CNN的密集人群检测算法。首先,在特征提取阶段添加空间与通道注意力机制,使用加强的双向特征金字塔网络(S-BiFPN)替代原网络中的多尺度特征金字塔(FPN),使网络对重要特征进... 为提高拥挤场景下的人群检测准确率,提出一种基于改进Faster R-CNN的密集人群检测算法。首先,在特征提取阶段添加空间与通道注意力机制,使用加强的双向特征金字塔网络(S-BiFPN)替代原网络中的多尺度特征金字塔(FPN),使网络对重要特征进行自主学习并加强对图像深层特征的提取;其次,引入多实例预测(MIP)算法对实例进行预测,以避免模型对拥挤场景下的目标造成漏检;最后,对模型中的非极大值抑制(NMS)进行优化,并额外增设一个交并比(IoU)阈值,以对检测结果的干扰项进行精确抑制。在开源的密集人群检测数据集上进行测试的结果显示,相较于原Faster R-CNN算法,所提算法的平均精度(AP)提升5.6%,Jaccard指数值提升3.2%。所提算法具有较高检测精度和稳定性,可以满足密集场景人群检测的需求。 展开更多
关键词 密集人群检测 faster r-cnn 注意力机制 多实例预测 加强的双向特征金字塔网络
在线阅读 下载PDF
Faster R-CNN模型在车辆检测中的应用 被引量:66
16
作者 王林 张鹤鹤 《计算机应用》 CSCD 北大核心 2018年第3期666-670,共5页
针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入... 针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入图像进行卷积和池化等操作提取车辆特征,结合多尺度训练和难负样本挖掘策略降低复杂环境的影响,利用KITTI数据集对深度神经网络模型进行训练,并采集实际场景中的图像进行测试。仿真实验中,在保证检测时间的情况下,相对原Faster R-CNN算法检测精确度提高了约8%。实验结果表明,所提方法能够自动地提取车辆特征,解决了传统方法提取特征费时费力的问题,同时提高了车辆检测精确度,具有良好的泛化能力和适用范围。 展开更多
关键词 车辆检测 faster r-cnn模型 区域建议网络 难负样本挖掘 KITTI数据集
在线阅读 下载PDF
基于Faster R-CNN的人体行为检测研究 被引量:19
17
作者 莫宏伟 汪海波 《智能系统学报》 CSCD 北大核心 2018年第6期967-973,共7页
由于人体行为类内差异大,类间相似性大,而且还存在视觉角度与遮挡等问题,使用人工提取特征的方法特征提取难度大并且难以提取有效特征,使得人体行为检测率较低。针对这个问题,本文在物体检测的基础上使用检测效果较好的Faster R-CNN算... 由于人体行为类内差异大,类间相似性大,而且还存在视觉角度与遮挡等问题,使用人工提取特征的方法特征提取难度大并且难以提取有效特征,使得人体行为检测率较低。针对这个问题,本文在物体检测的基础上使用检测效果较好的Faster R-CNN算法来进行人体行为检测,并对Faster R-CNN算法与批量规范化算法和在线难例挖掘算法进行结合,有效利用了深度学习算法实现人体行为检测。对此改进算法进行实验验证,验证的分类和位置精度达到了80%以上,实验结果表明,改进的算法具有识别精度高的特点。 展开更多
关键词 人体行为检测 更快速区域卷积神经网络 在线难例挖掘 深度学习 目标检测 卷积神经网络 批规范化 迁移学习
在线阅读 下载PDF
基于Faster R-CNN的铁路接触网鸟巢检测 被引量:8
18
作者 王纪武 罗海保 +1 位作者 鱼鹏飞 刘亚凡 《铁道机车车辆》 北大核心 2020年第2期78-81,108,共5页
为了解决铁路接触上筑巢对铁路安全运行造成的潜在危害,提出一种基于Faster R-CNN的铁路接触网鸟巢检测方法。首先通过改进卷积神经网络VGG16对目标进行特征提取;然后参考RPN网络利用3x3的滑动窗口分别在不同分辨率的卷积特征图上获取... 为了解决铁路接触上筑巢对铁路安全运行造成的潜在危害,提出一种基于Faster R-CNN的铁路接触网鸟巢检测方法。首先通过改进卷积神经网络VGG16对目标进行特征提取;然后参考RPN网络利用3x3的滑动窗口分别在不同分辨率的卷积特征图上获取目标初始建议区域,最后选择在分辨率较高的Conv4卷积特征图上增加一个反卷积操作对该层特征图的分辨率进行进一步提升,并作为建议窗口的特征映射层传入目标检测子网络中。通过对实际高速铁路行进中拍摄的含有鸟巢的图像进行试验验证。试验结果表明:文中提出的方法在检测精度与速度上,均优于目前主流的Faster R-CNN算法。该方法为实现铁路沿线接触上鸟巢的自动检测提供了可靠依据。 展开更多
关键词 faster r-cnn 卷积神经网络 接触网 鸟巢检测
在线阅读 下载PDF
基于级联Faster R-CNN的高铁接触网支撑装置等电位线故障检测 被引量:15
19
作者 李长江 韩志伟 +2 位作者 钟俊平 王立有 刘志刚 《铁道学报》 EI CAS CSCD 北大核心 2019年第6期68-73,共6页
在高速铁路接触网支撑与悬挂装置中,等电位线起到保证定位管与定位器间可靠电连接的作用。当其发生散股故障时,会对定位器支座造成电化学腐烛,甚至导致定位器与支座连接处断裂脱离,影响行车运行安全。针对高速铁路接触网支撑装置等电位... 在高速铁路接触网支撑与悬挂装置中,等电位线起到保证定位管与定位器间可靠电连接的作用。当其发生散股故障时,会对定位器支座造成电化学腐烛,甚至导致定位器与支座连接处断裂脱离,影响行车运行安全。针对高速铁路接触网支撑装置等电位线散股问题,提出一种基于级联Faster R-CNN目标定位的等电位线不良状态检测方法。通过分析接触网4C检测车采集到的接触网支撑及悬挂装置图像,利用第一级Faster R-CNN获得定位器支座部件特征并实现定位;利用第二级Faster R-CNN学习等电位线散股故障特征;通过对比分析等电位线正常及故障占比,实现等电位线正常与故障分类。实验表明,本方法能够较准确地实现等电位线不良状态检测,测试集识别准确率达到94.5%。 展开更多
关键词 等电位线 散股故障 级联faster r-cnn 深度学习
在线阅读 下载PDF
基于Faster R-CNN的零件表面缺陷检测算法 被引量:52
20
作者 黄凤荣 李杨 +2 位作者 郭兰申 钱法 朱雨晨 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第6期883-893,共11页
针对人工和传统自动化算法检测发动机零件表面缺陷中准确率和效率低下,无法满足智能制造需求问题,提出了一种基于深度学习的检测算法.以Faster R-CNN深度学习算法为算法框架,引入聚类理论来确定anchor方案,通过对比k-meansII和CURE聚类... 针对人工和传统自动化算法检测发动机零件表面缺陷中准确率和效率低下,无法满足智能制造需求问题,提出了一种基于深度学习的检测算法.以Faster R-CNN深度学习算法为算法框架,引入聚类理论来确定anchor方案,通过对比k-meansII和CURE聚类算法生成anchor对检测结果的影响,提出了基于聚类生成anchor方案的Faster R-CNN的零件表面缺陷检测算法,并引入多级ROI池化层结构,减少ROI池化过程中取整带来的偏差,实现高效并准确检测零件表面缺陷的目的.通过设计缺陷图像数据采集方案,建立了3种缺陷零件数据集,并验证了算法的性能.实验结果表明,该算法将缺陷检测的均值平均精度mAP从原算法的54.7%提高到97.9%,检测速度最快达到4.9 fps,能够满足智能制造的生产需求. 展开更多
关键词 表面缺陷检测 卷积神经网络 深度学习 快速区域卷积神经网络 聚类算法
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部