期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
基于Faster R-CNN的气象设备观测环境影响图像研究
1
作者 王超然 周若 +2 位作者 李中华 邬昀 白子诚 《电子设计工程》 2025年第4期128-132,共5页
为确保气象站点实况观测数据的准确性,观测场地需要有良好的环境。该研究利用深度学习技术中的Faster R-CNN模型,自动检测气象观测站场景中可能干扰仪器读数的视觉障碍物。通过收集并详细标注实际观测场景的图像数据,建立一个包含环境... 为确保气象站点实况观测数据的准确性,观测场地需要有良好的环境。该研究利用深度学习技术中的Faster R-CNN模型,自动检测气象观测站场景中可能干扰仪器读数的视觉障碍物。通过收集并详细标注实际观测场景的图像数据,建立一个包含环境对观测设备产生影响情况的数据集,涵盖正常与异常环境情况的百叶箱和雨量筒图像及其标注信息。对Faster R-CNN模型进行微调和超参数优化,以适应该特定识别任务。实验结果验证了模型在识别和定位障碍物方面的高效性,准确率为97.1%,展现出了较好的鲁棒性。该项研究将图像识别处理用于自动站探测环境,不仅证明了深度学习在改善气象观测条件中的有效性,也为相似领域的应用提供了方法论上的指导。 展开更多
关键词 深度学习 faster r-cnn 气象观测场 图像处理
在线阅读 下载PDF
基于支持集特征增强的Meta Faster R-CNN小样本目标检测
2
作者 马俊光 文峰 殷向阳 《沈阳理工大学学报》 2025年第2期48-54,共7页
小样本目标检测的元学习方法能快速适应少量训练样本,较好解决现有常规检测模型泛化能力不强、适应新任务速度缓慢、鲁棒性差的问题,具有较高的实际应用价值,但该方法对支持集特征利用能力不足、检测精度不高。为此,基于支持集特征增强... 小样本目标检测的元学习方法能快速适应少量训练样本,较好解决现有常规检测模型泛化能力不强、适应新任务速度缓慢、鲁棒性差的问题,具有较高的实际应用价值,但该方法对支持集特征利用能力不足、检测精度不高。为此,基于支持集特征增强,针对元学习SOTA算法Meta Faster R-CNN进行改进,从支持集背景抑制与目标特征增强两个角度出发,削弱与待查询目标无关的背景信息并加强支持集内部特征之间的联系,构建一种检测性能更高的小样本目标检测算法。实验结果表明:在PASCAL VOC Novel Set数据集上的元测试阶段,本文改进算法在1-shot、2-shot、3-shot、5-shot、10-shot下的平均精度均值(mAP@0.5)较原算法分别提升了0.066%、12.038%、12.289%、10.073%、9.539%;在元微调后的测试阶段,本文改进算法的mAP@0.5较原算法有所提升或基本持平;增强支持集特征能够有效提升小样本目标检测精度。 展开更多
关键词 小样本目标检测 元学习 Meta faster r-cnn 背景抑制 特征增强
在线阅读 下载PDF
基于改进Faster R-CNN的半导体激光器芯片缺陷检测
3
作者 吕毅飞 贾华宇 罗飚 《激光杂志》 北大核心 2025年第2期94-100,共7页
针对传统半导体激光器芯片缺陷检测中检测精度不高的问题,提出一种基于改进Faster R-CNN的半导体激光器芯片缺陷检测及分类方法。首先,搭建半导体激光器芯片缺陷采集装置,采集芯片工作时的状态并建立数据集;然后优化ResNet50特征提取网... 针对传统半导体激光器芯片缺陷检测中检测精度不高的问题,提出一种基于改进Faster R-CNN的半导体激光器芯片缺陷检测及分类方法。首先,搭建半导体激光器芯片缺陷采集装置,采集芯片工作时的状态并建立数据集;然后优化ResNet50特征提取网络,减少残差块结构的同时,使用多个3*3卷积层,提高其检测重要信息的能力;最后将CA(Coordinate Attention)注意力机制引入到改进ResNet50网络的不同层级中,自适应地学习各通道的重要性权重,进一步提升特征表示能力。实验结果表明,与原始网络相比,提出的方法提高了检测精度与分类准确性,具有更好的召回率和准确率,能够快速准确进行缺陷检测,进一步提升工艺水平。 展开更多
关键词 半导体激光器 缺陷检测 faster r-cnn 注意力机制
在线阅读 下载PDF
基于改进Faster R-CNN与U-Net算法的桥梁病害识别与量化方法 被引量:1
4
作者 乔朋 梁志强 +3 位作者 段长江 马晨 王思龙 狄谨 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期627-638,共12页
为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,... 为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,提出ResNet34结合U-Net的裂缝形态提取方法,并结合裂缝形态学研究了裂缝像素宽度和长度的确定方法.结果表明:锚框优化设计可改进Faster R-CNN算法的表观病害识别效果,5类常见病害的预测准确率、召回率、平均精确率分别由68.40%、69.87%、74.64%提升到85.40%、83.59%、83.72%;利用病害预测框,结合改进U-Net算法的裂缝像素尺寸计算,可实现裂缝病害尺寸的自动测量;基于改进Faster R-CNN和改进U-Net的方法可实现混凝土桥梁常见病害的智能识别和尺寸量化,从而提高桥梁病害检测效率并促进桥梁技术状况评定的智能化. 展开更多
关键词 桥梁工程 表观病害识别 裂缝尺寸确定 改进faster r-cnn 改进U-Net
在线阅读 下载PDF
复杂背景下基于改进的Faster R-CNN杂草识别研究
5
作者 宋国翠 晏华成 +1 位作者 龙涛元 吴立鸿 《长江信息通信》 2024年第11期8-10,共3页
杂草是阻碍农业丰产的重要因素,如何快速准确识别杂草是智能除草的关键。为了提高杂草识别的准确性与实时性,将Faster R-CNN经典的目标检测模型用于杂草识别,选取不同土壤环境、不同杂草密度下的花生幼苗-杂草为试验对象,制作了PASCAL ... 杂草是阻碍农业丰产的重要因素,如何快速准确识别杂草是智能除草的关键。为了提高杂草识别的准确性与实时性,将Faster R-CNN经典的目标检测模型用于杂草识别,选取不同土壤环境、不同杂草密度下的花生幼苗-杂草为试验对象,制作了PASCAL VOC格式数据集,为了消除复杂背景对植物目标识别的影响,文章提出了采用分割背景用于改进Faster R-CNN中RPN网络的分类层。为了验证该方法的有效性,该研究采用VGG-16为特征提取网络,对比原模型,引入分割背景,提高前景注意力机制后的花生苗-杂草识别模型的mAP提高了0.203。试验结果表明:所提方法对复杂背景下花生苗-杂草识别有较好的检测效果,可为实时精准除草提供参考。 展开更多
关键词 杂草识别 faster r-cnn RPN网络 背景分割
在线阅读 下载PDF
基于改进Faster R-CNN的隧道衬砌中离散实体目标自动检测研究 被引量:6
6
作者 崔广炎 王艳辉 +3 位作者 徐杰 丁冠军 秦湘怡 任秋阳 《铁道学报》 EI CAS CSCD 北大核心 2024年第2期171-180,共10页
隧道衬砌中离散实体目标的检测精度和时效性直接关乎隧道的运营安全,采用图像视觉技术进行图像自动解译可极大提升检测效率和结果的准确性,因此基于离散实体目标的雷达图像数据构建自定义雷达数据集合,并提出一套改进的Faster R-CNN算... 隧道衬砌中离散实体目标的检测精度和时效性直接关乎隧道的运营安全,采用图像视觉技术进行图像自动解译可极大提升检测效率和结果的准确性,因此基于离散实体目标的雷达图像数据构建自定义雷达数据集合,并提出一套改进的Faster R-CNN算法对隧道衬砌中的离散实体目标进行自动检测。该算法首先对现有Faster R-CNN网络的特征提取模块进行改进,提出一套全新的轻量化特征提取网络ResNet_FMBConv对雷达图像特征进行深度挖掘;基于ResNet_FMBConv网络改进现有特征金字塔(FPN)结构,实现对多尺寸下目标的精准辨识。其次,基于实测和仿真的雷达图像数据构建离散实体目标的自定义雷达数据集合,通过几何变换方法对雷达图像进行数据增强后用于算法验证。结果表明,改进算法在IOU=0.50∶0.95情况下的检测精确率、召回率、F 1分数和FPS分别为45.1%、54.0%、49.1%和21.65 fps。在保证召回率基本持平的情况下,同比YOLOv3_spp、SSD、Retinanet和Faster R-CNN等目标检测算法的精确率和F 1分数分别提升2%~9%和1%~6%。同时,试验结果表明改进后的特征提取网络ResNet_FMBConv也优于现有Resnet-50、VGG16、Efficientnet_b0和Mobilenetv3等目标分类网络。 展开更多
关键词 离散实体目标检测 faster r-cnn ResNet_FMBConv模块 GPR 特征金字塔
在线阅读 下载PDF
基于Faster R-CNN的动漫场景多人物自动识别研究
7
作者 高梦 《佳木斯大学学报(自然科学版)》 CAS 2024年第3期53-57,共5页
当前动漫场景多人物识别方法在提取目标特征时,对于汇聚特征信息的滑动窗口定位不准确,所提取到的特征信息不准确,导致识别精度较差,因此为了解决这一问题,提出了一种基于Faster R-CNN的动漫场景多人物自动识别方法。标注大量动漫场景... 当前动漫场景多人物识别方法在提取目标特征时,对于汇聚特征信息的滑动窗口定位不准确,所提取到的特征信息不准确,导致识别精度较差,因此为了解决这一问题,提出了一种基于Faster R-CNN的动漫场景多人物自动识别方法。标注大量动漫场景人物形象图片,构建训练集和测试集,将其输入Faster R-CNN神经网络模型,提取图像特征并构建特征图。采用滑动窗口遍历特征图,选择特征向量评分最高的窗口,保证窗口内局部特征可以充分表示动漫人物主要特征,根据特征提取结果自动识别多个动漫人物身份,完成动漫场景多人物自动识别。实验结果表明,设计方法与两种传统方法相比,人物识别召回率分别提升了11.10%和18.99%,提高了目标识别精度,人物识别过拟合比率稳定在1.0060,说明该方法能够高精度不同类别的动漫人物,且识别过程较为稳定,识别效率较高。 展开更多
关键词 faster r-cnn模型 训练数据 测试数据 动漫场景 多人物识别 特征提取
在线阅读 下载PDF
多头自注意力机制的Faster R-CNN目标检测算法 被引量:3
8
作者 文靖杰 王勇 +1 位作者 李金龙 张渝 《现代电子技术》 北大核心 2024年第7期8-16,共9页
文中提出一种融合多头注意力机制、ROIAlign和Soft-NMS的FasterR-CNN目标检测算法,旨在解决原始Faster R-CNN目标检测网络中存在的检测精度低、漏检、误检的问题。首先,为了提高Faster R-CNN的感知能力,提取特征图中的重要特征并降低对... 文中提出一种融合多头注意力机制、ROIAlign和Soft-NMS的FasterR-CNN目标检测算法,旨在解决原始Faster R-CNN目标检测网络中存在的检测精度低、漏检、误检的问题。首先,为了提高Faster R-CNN的感知能力,提取特征图中的重要特征并降低对无关特征的提取,在网络中嵌入注意力机制;接着,针对共享全连接层的降维操作导致的一些区域的细节信息被忽略,造成局部信息的丢失,采用一维卷积代替共享全连接层实现权重计算的任务,以捕捉更广泛的空间信息;然后为了提供更丰富的特征表达能力,在注意力机制中引入多头机制分别对特征的不同部分进行重要性的加权;为了减少在特征提取时原图信息的丢失,使用ROI Align替换ROI Pooling算法;最后,在算法后处理中引入Soft-NMS替换传统非极大抑制(NMS)算法以减少漏检和误检情况。实验证明,改进后的Faster R-CNN目标检测网络对感兴趣目标的定位能力得到提高,漏检和误检情况减少,平均检测精度得到显著提升。 展开更多
关键词 机器视觉 目标检测 faster r-cnn ROI Align 多头注意力机制 Soft-NMS
在线阅读 下载PDF
改进Faster R-CNN的视频SAR动目标检测算法 被引量:1
9
作者 许宜明 李东生 杨浩 《火力与指挥控制》 CSCD 北大核心 2024年第1期124-130,138,共8页
针对当前可用于深度学习的视频SAR数据稀少的现状,以及动目标检测算法中存在较多的漏检和虚警问题,基于美国桑迪亚国家实验室真实视频SAR数据制作深度学习数据集,提出一种改进Faster R-CNN的视频SAR动目标检测算法。算法以截取后的ResNe... 针对当前可用于深度学习的视频SAR数据稀少的现状,以及动目标检测算法中存在较多的漏检和虚警问题,基于美国桑迪亚国家实验室真实视频SAR数据制作深度学习数据集,提出一种改进Faster R-CNN的视频SAR动目标检测算法。算法以截取后的ResNet50为特征提取网络,利用K-means加遗传算法自适应计算锚框,并在数据预处理环节加入S型曲线增强方法,来增强图像的对比度信息。经实验验证,所提出方法能够显著提升动目标检测率和检测速度,其中,平均精度(AP)和F1分数提升均达到10个点以上,有效降低了虚警和漏检,整体表现优于一阶段算法SSD和RetinaNet。 展开更多
关键词 视频SAR 动目标检测 faster r-cnn 图像增强 K-MEANS 遗传算法
在线阅读 下载PDF
基于Faster R-CNN的轻量化遥感图像军用飞机检测模型 被引量:1
10
作者 党玉龙 叶成绪 《激光杂志》 CAS 北大核心 2024年第7期111-117,共7页
遥感图像军用飞机目标检测对侦察预警和情报分析等领域具有重要意义。针对该任务中图像背景复杂、目标尺度变化大和分布密集等挑战,提出了一种基于Faster R-CNN的轻量化检测模型。该模型使用残差拆分注意力网络来捕获目标区域特征的全... 遥感图像军用飞机目标检测对侦察预警和情报分析等领域具有重要意义。针对该任务中图像背景复杂、目标尺度变化大和分布密集等挑战,提出了一种基于Faster R-CNN的轻量化检测模型。该模型使用残差拆分注意力网络来捕获目标区域特征的全局上下文信息以提升模型的表征能力;利用可变形卷积来动态学习目标区域的形变特征,适应不同尺度和形状的目标;采用对比实验的方法精简骨干网络,降低过深的骨干网络与过低的采样率对于小目标检测的影响,提高模型的识别速度。在目标候选框筛选阶段,引入Soft NMS算法,根据置信度降序排名去除重叠度高的候选框,降低密集分布目标的漏检率。实验结果表明,提出的Faster R-CNN模型在参数量为23.844 MB的情况下,mAP0.5-0.95达到了77.1%,检测速度达到了43.7帧/秒,相比于多个主流模型具有较好的综合性能。 展开更多
关键词 遥感图像 军用飞机 目标检测 faster r-cnn
在线阅读 下载PDF
基于Swin Transformer的改进Faster R-CNN水表数字检测
11
作者 孙立云 袁玉英 +4 位作者 罗永刚 张玺 赵金洋 齐瑞洁 乔世超 《中国测试》 北大核心 2024年第S2期194-202,共9页
针对现有的水表数字识别算法存在的效率和准确率较低的问题,制作4000张字轮式水表图片数据集,并提出一种改进的Faster R-CNN检测算法。改进的Faster R-CNN引入Swin Transformer代替传统的卷积网络作为特征提取网络,并对其轻量化处理,即... 针对现有的水表数字识别算法存在的效率和准确率较低的问题,制作4000张字轮式水表图片数据集,并提出一种改进的Faster R-CNN检测算法。改进的Faster R-CNN引入Swin Transformer代替传统的卷积网络作为特征提取网络,并对其轻量化处理,即删去下采样1/32的网络结构,保留下采样1/16之前的网络结构,提升模型对小目标的检测精度,降低参数量和检测时间;使用FPN融合轻量化Swin Transformer的不同特征层,使模型充分利用高层特征图的语义信息;RPN结构使用Focal Loss损失函数代替交叉熵损失函数,减少正负样本数量失衡造成的误差。实验证明,改进后的Faster R-CNN算法在水表数据集上mAP提升2.31%,参数量下降79.3%,检测时间减少0.015s。 展开更多
关键词 faster r-cnn 水表数字检测 Swin Transformer FPN Focal Loss
在线阅读 下载PDF
基于改进型Faster R-CNN的变电站设备缺陷检测
12
作者 康曦 邓琛韬 +3 位作者 伍毅 葛林 朱东松 王军 《信息技术与信息化》 2024年第11期85-88,共4页
为了保障变电站设备的稳定运行,准确检测变电站设备缺陷,提出一种基于改进型Faster R-CNN的设备缺陷检测方法。通过引入哈希辅助分支,抑制背景区域干扰,提高了检测精度,同时避免了非目标区域的无效计算,可以有效提高检测效率。实验表明... 为了保障变电站设备的稳定运行,准确检测变电站设备缺陷,提出一种基于改进型Faster R-CNN的设备缺陷检测方法。通过引入哈希辅助分支,抑制背景区域干扰,提高了检测精度,同时避免了非目标区域的无效计算,可以有效提高检测效率。实验表明,引入深度哈希辅助分支后,与原Faster R-CNN模型对比,在非目标区域上的计算时间从0.0822 s/张提高到0.0443 s/张,检测结果的mAP从76.43%提高到81.24%,在保持较高检测速度的同时可以有效地提高检测精度,验证了模型的可靠性与高效性。 展开更多
关键词 faster r-cnn 缺陷检测 哈希辅助分支
在线阅读 下载PDF
基于Faster R-CNN模型的交通信号灯检测识别研究
13
作者 李靖博 《山西交通科技》 2024年第3期115-118,共4页
随着城市交通的不断发展和智能化进程的推进,交通信号灯的准确检测与识别对于交通安全和效率的提升显得尤为重要。在传统识别算法的基础上,研究使用Faster R-CNN算法实现交通信号灯高效准确的检测与识别。通过使用人工标注的数据集,并... 随着城市交通的不断发展和智能化进程的推进,交通信号灯的准确检测与识别对于交通安全和效率的提升显得尤为重要。在传统识别算法的基础上,研究使用Faster R-CNN算法实现交通信号灯高效准确的检测与识别。通过使用人工标注的数据集,并对数据进行预处理,确保数据质量与准确性;基于PyTorch框架上构建Faster R-CNN模型,并经过训练保证模型收敛;在模型评价方面,使用准确率、召回率等指标对模型性能进行了全面评估。试验结果表明,研究所提出的模型在交通信号灯检测与识别任务中表现出色,预测准确率达到90%以上,对交通管理和智能交通系统的发展具有积极意义。 展开更多
关键词 智能交通系统 交通信号灯 faster r-cnn 多类别分类
在线阅读 下载PDF
基于改进Faster R-CNN的路面灌封裂缝检测方法 被引量:44
14
作者 孙朝云 裴莉莉 +2 位作者 李伟 郝雪丽 陈瑶 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第2期84-93,共10页
路面灌封裂缝对路面使用寿命的影响较为突出,为了解决目前灌封裂缝检测技术匮乏的问题,文中提出了一种基于改进Faster R-CNN的路面灌封裂缝检测方法。首先,建立灌封裂缝图像集,对采集到的图像进行增广处理,构建路面灌封裂缝标注样本数据... 路面灌封裂缝对路面使用寿命的影响较为突出,为了解决目前灌封裂缝检测技术匮乏的问题,文中提出了一种基于改进Faster R-CNN的路面灌封裂缝检测方法。首先,建立灌封裂缝图像集,对采集到的图像进行增广处理,构建路面灌封裂缝标注样本数据集,并将图像集按6∶2∶2的比例划分为训练集、验证集和测试集;接着,采用Faster R-CNN模型对灌封裂缝进行检测,针对Faster R-CNN检测灌封裂缝存在漏检、定位效果不够理想的问题,文中分别将VGG16、ZFNet和Resnet50网络的特征提取层与Faster R-CNN模型进行结合,结果表明,VGG16和Faster R-CNN结合的模型检测精度最高,达到0.9031;然后,通过增加灌封裂缝候选框宽高比的方法继续改进模型,检测精度达到0.9073,且原先被漏检的目标能被检测出来;最后,对改进Faster R-CNN与YOLOv2模型的检测精度及定位效果进行对比,结果表明,文中提出的改进Faster R-CNN能够明显提高对灌封裂缝的检测准确率和定位精度。 展开更多
关键词 路面病害 灌封裂缝 检测方法 特征提取 多尺度定位 faster r-cnn YOLOv2
在线阅读 下载PDF
基于Faster R-CNN和图像增强的水下鱼类目标检测方法 被引量:25
15
作者 袁红春 张硕 《大连海洋大学学报》 CAS CSCD 北大核心 2020年第4期612-619,共8页
为了克服水下鱼类图像样本量不足及实现对水下低清晰度图像中鱼类的快速检测,提出了一种基于Faster R-CNN二次迁移学习和带色彩恢复的多尺度视网膜增强算法(MSRCR)的方法,首先通过ImageNet预训练模型对Open Images高清鱼类数据集进行一... 为了克服水下鱼类图像样本量不足及实现对水下低清晰度图像中鱼类的快速检测,提出了一种基于Faster R-CNN二次迁移学习和带色彩恢复的多尺度视网膜增强算法(MSRCR)的方法,首先通过ImageNet预训练模型对Open Images高清鱼类数据集进行一次迁移学习初步训练网络,然后固定检测模型低3层的卷积网络参数,再用水下拍摄的小规模鱼类数据集进行二次迁移学习微调网络,最后通过MSRCR算法对水下拍摄图像进行处理以增强其与高清鱼类图像的相似性,解决水下图像降质问题,让二次迁移学习高效进行。结果表明,该方法利用小规模水下拍摄鱼类数据集训练出的网络查准率可达到98.12%,网络检测能力及后续提升能力优于传统机器学习方法,并能够实现鱼类目标的快速检测,本研究结果可为深海探测作业与海底鱼类等生物资源的监测、保护和可持续开发等工程应用提供一定的参考。 展开更多
关键词 深度学习 鱼类检测 faster r-cnn算法 MSRCR算法 迁移学习
在线阅读 下载PDF
基于改进Faster R-CNN的无人机视频车辆自动检测 被引量:10
16
作者 彭博 蔡晓禹 +2 位作者 唐聚 谢济铭 张媛媛 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第6期1199-1204,共6页
为了从广域视角准确提取道路交通信息,提出了一种用于无人机视频车辆自动识别的改进Faster R-CNN模型.该模型以基于ZF网络的Faster R-CNN为原型,优化调整学习策略、训练图像尺寸、学习率等模型参数,调整RPN网络卷积核并引入SoftNMS算法... 为了从广域视角准确提取道路交通信息,提出了一种用于无人机视频车辆自动识别的改进Faster R-CNN模型.该模型以基于ZF网络的Faster R-CNN为原型,优化调整学习策略、训练图像尺寸、学习率等模型参数,调整RPN网络卷积核并引入SoftNMS算法,增加1~3个特征提取卷积层和激活层.基于无人机交通视频构建了训练图像集,对现有Faster R-CNN模型及改进模型进行训练和测试.结果显示,与采用Step学习策略的模型相比,采用学习策略Inv的模型车辆识别平均准确率提高了0.4%~9.4%.引入SoftNMS算法的模型比引入前的模型平均准确率提高了0.1%~7.9%.提出的改进模型平均准确率为94.6%,较基于ZF的Faster R-CNN模型、基于VGGM的Faster R-CNN模型和基于VGG16的Faster R-CNN模型分别提高了13.1%、13.1%和4.1%,且训练时间减少约3%,对多种场景的视频车辆检测具有较好的适用性. 展开更多
关键词 智能交通 车辆检测 深度学习 无人机视频 faster r-cnn
在线阅读 下载PDF
基于Faster R-CNN的航拍图像中绝缘子识别 被引量:31
17
作者 程海燕 翟永杰 陈瑞 《现代电子技术》 北大核心 2019年第2期98-102,共5页
为了解决传统绝缘子识别方法存在适用性不强、识别效率低的问题,结合深度卷积神经网络思想,提出一种从电网巡检航拍图像中自动识别绝缘子的方法。应用Faster R-CNN框架,结合电网巡检航拍图像数据库,构建绝缘子识别系统,自动识别航拍图... 为了解决传统绝缘子识别方法存在适用性不强、识别效率低的问题,结合深度卷积神经网络思想,提出一种从电网巡检航拍图像中自动识别绝缘子的方法。应用Faster R-CNN框架,结合电网巡检航拍图像数据库,构建绝缘子识别系统,自动识别航拍图像中的绝缘子,并分析不同模型和参数对识别精确度的影响。实验结果表明,相比于传统航拍绝缘子识别方法,采用深度卷积神经网络对航拍绝缘子进行学习和识别,具有较高的识别准确率和效率,可以很好地识别各种类型的绝缘子,识别性能大幅度提高。 展开更多
关键词 卷积神经网络 深度学习 faster r-cnn 航拍图像 绝缘子识别 智能电网
在线阅读 下载PDF
基于Faster R-CNN的新疆棉花幼苗与杂草识别方法 被引量:6
18
作者 许燕 温德圣 +2 位作者 周建平 樊湘鹏 刘洋 《排灌机械工程学报》 CSCD 北大核心 2021年第6期602-607,共6页
针对新疆棉田杂草的伴生特点带来的特征过拟合、精确率低等问题,以新疆棉花幼苗与杂草为研究对象,分析杂草识别率低的影响因素,建立了基于Faster R-CNN的网络识别模型.采集不同角度、不同自然环境和不同密集程度混合生长的棉花幼苗与杂... 针对新疆棉田杂草的伴生特点带来的特征过拟合、精确率低等问题,以新疆棉花幼苗与杂草为研究对象,分析杂草识别率低的影响因素,建立了基于Faster R-CNN的网络识别模型.采集不同角度、不同自然环境和不同密集程度混合生长的棉花幼苗与杂草图像5370张.为确保样本质量以及多样性,利用颜色迁移和数据增强来提高图像的颜色特征与扩大样本量,以PASCAL VOC格式数据集进行网络模型训练.通过综合对比VGG16,VGG19,ResNet50和ResNet101这4种网络的识别时间与精度,选择VGG16网络训练Faster R-CNN模型.在此基础上设计了纵横比为1∶1的最佳锚尺度,在该模型下对新疆棉花幼苗与杂草进行识别,实现91.49%的平均识别精度,平均识别时间262 ms.研究结果为农业智能精确除草装备的研发提供了参考. 展开更多
关键词 新疆棉花苗期 杂草识别 卷积神经网络 faster r-cnn
在线阅读 下载PDF
基于改进Faster R-CNN算法的舰船目标检测与识别 被引量:23
19
作者 赵春晖 周瑶 《沈阳大学学报(自然科学版)》 CAS 2018年第5期366-371,380,共7页
Faster R-CNN算法是一种基于区域建议网络的深度学习网络模型,近年被提出并应用于目标检测与识别领域.Faster R-CNN算法中区域建议网络的创新性提出,使之相对于经典的R-CNN算法和Fast R-CNN算法有效地提高了目标检测的速度.本文分析了Fa... Faster R-CNN算法是一种基于区域建议网络的深度学习网络模型,近年被提出并应用于目标检测与识别领域.Faster R-CNN算法中区域建议网络的创新性提出,使之相对于经典的R-CNN算法和Fast R-CNN算法有效地提高了目标检测的速度.本文分析了Faster R-CNN算法中区域建议网络的实现方法,并在区域建议网络的包围盒尺寸设置中引入了K-Means聚类算法,通过聚类方法对图像中目标大小进行聚类分析,将聚类结果直接输入区域建议网络中,从而实现对Faster R-CNN算法中的区域建议网络进行改进.对舰船目标的检测与识别的,实验结果表明:该方法在提高了Faster R-CNN算法识别精度的同时,显著地缩短了算法的识别时间. 展开更多
关键词 目标检测与识别 faster r-cnn算法 K-MEANS聚类算法
在线阅读 下载PDF
基于改进Faster R-CNN模型的水果分类识别 被引量:7
20
作者 贾艳平 桑妍丽 李月茹 《食品与机械》 CSCD 北大核心 2023年第8期129-135,共7页
目的:提高水果类别识别准确率。方法:基于改进Faster R-CNN模型建立水果识别方法。使用正则化方法对高维参数进行权重衰减,以有效解决训练过程中可能出现的过拟合问题;在Faster R-CNN框架中添加两个损失函数:一个似然函数和一个正则化函... 目的:提高水果类别识别准确率。方法:基于改进Faster R-CNN模型建立水果识别方法。使用正则化方法对高维参数进行权重衰减,以有效解决训练过程中可能出现的过拟合问题;在Faster R-CNN框架中添加两个损失函数:一个似然函数和一个正则化函数,以优化卷积层和池化层;以最小二乘法求解水果识别的目标函数;利用准确率、回召率、精度和F1分数对训练好的水果识别方法进行水果识别效果评估。结果:所提出的方法对水果识别的准确率、精度和回召率达到99.69%,0.9968,0.9948;与其他8种水果识别方法相比,所提出方法对水果识别的准确率、精度和回召率至少提高了0.91%,1.32%,0.51%。结论:该方法可准确识别水果种类。 展开更多
关键词 水果 识别方法 faster r-cnn 损失函数
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部