针对扶梯运行时光照的变化、阴影、背景中固定对象的移动等因素严重影响机器视觉检测精度问题,为了提高对扶梯乘客位姿目标的检测精度和效率,采用VGG16卷积神经网络作为Faster-RCNN(Faster-Regions with CNN features)的基础网络,提出...针对扶梯运行时光照的变化、阴影、背景中固定对象的移动等因素严重影响机器视觉检测精度问题,为了提高对扶梯乘客位姿目标的检测精度和效率,采用VGG16卷积神经网络作为Faster-RCNN(Faster-Regions with CNN features)的基础网络,提出基于改进Faster R-CNN的扶梯乘客异常位姿实时检测改进算法。首先Faster R-CNN对视频图像进行全卷积操作得到特征图,再通过RPN层得到被测对象的类别分数以及对象物体所在原图中所在的位置,利用Faster R-CNN算法处理后的图像得到扶梯上乘客诸如下蹲、身体弯曲等异常位姿,从而判断乘客是否处于危险状态。实验结果表明:FasterR-CNN的检测算法能准确实时地识别出扶梯乘客的危险位姿,从而实现控制系统及时做出相应的安全保护措施,提高自动扶梯运行的安全性能。展开更多