期刊文献+
共找到653篇文章
< 1 2 33 >
每页显示 20 50 100
Real-time object segmentation based on convolutional neural network with saliency optimization for picking 被引量:1
1
作者 CHEN Jinbo WANG Zhiheng LI Hengyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1300-1307,共8页
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio... This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop. 展开更多
关键词 convolutional neural network object detection object segmentation superpixel saliency optimization
在线阅读 下载PDF
Hand segmentation from a single depth image based on histogram threshold selection and shallow CNN 被引量:1
2
作者 XU Zhengze ZHANG Wenjun 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期675-685,共11页
Real-time hand gesture recognition technology significantly improves the user's experience for virtual reality/augmented reality(VR/AR) applications, which relies on the identification of the orientation of the ha... Real-time hand gesture recognition technology significantly improves the user's experience for virtual reality/augmented reality(VR/AR) applications, which relies on the identification of the orientation of the hand in captured images or videos. A new three-stage pipeline approach for fast and accurate hand segmentation for the hand from a single depth image is proposed. Firstly, a depth frame is segmented into several regions by histogrambased threshold selection algorithm and by tracing the exterior boundaries of objects after thresholding. Secondly, each segmentation proposal is evaluated by a three-layers shallow convolutional neural network(CNN) to determine whether or not the boundary is associated with the hand. Finally, all hand components are merged as the hand segmentation result. Compared with algorithms based on random decision forest(RDF), the experimental results demonstrate that the approach achieves better performance with high-accuracy(88.34% mean intersection over union, mIoU) and a shorter processing time(≤8 ms). 展开更多
关键词 HAND segmentation HISTOGRAM THRESHOLD selection convolutional neural network(CNN) depth map
在线阅读 下载PDF
基于改进Fast-SCNN的塑瓶气泡缺陷实时分割算法
3
作者 付磊 任德均 +3 位作者 吴华运 郜明 邱吕 胡云起 《计算机应用》 CSCD 北大核心 2020年第6期1824-1829,共6页
在医用塑瓶的瓶身气泡检测时,瓶身气泡位置的任意性、气泡大小的不确定性以及气泡特征与瓶身特征之间的相似性增加了气泡缺陷的检测难度。针对上述气泡缺陷检测难点问题,提出了一种基于改进快速分割卷积神经网络(Fast-SCNN)的实时分割... 在医用塑瓶的瓶身气泡检测时,瓶身气泡位置的任意性、气泡大小的不确定性以及气泡特征与瓶身特征之间的相似性增加了气泡缺陷的检测难度。针对上述气泡缺陷检测难点问题,提出了一种基于改进快速分割卷积神经网络(Fast-SCNN)的实时分割算法。该分割算法的基础框架为Fast-SCNN,而为弥补原有网络分割尺寸的鲁棒性不足,借鉴了SENet的通道间信息的利用与多级跳跃连接的思想,具体为网络进一步下采样提取深层特征,在解码阶段将上采样操作融合SELayer模块,同时增加两次与网络浅层的跳跃连接。设计四组对比实验,在气泡数据集上以平均交并比(MIoU)与算法单张分割时间作为评价指标。实验结果表明,改进Fast-SCNN的综合性能最好,其MIoU为97.08%,其预处理后的医用塑瓶的平均检测时间为24.4 ms,其边界分割准确率较Fast-SCNN提升了2.3%,增强了对微小气泡的分割能力,而且该网络的MIoU相较现有的U-Net提升了0.27%,时间上降低了7.5 ms,综合检测性能远超过全卷积神经网络(FCN-8s)。该算法能够有效地对较小的、边缘不清晰的气泡进行分割,满足对气泡缺陷实时分割检测的工程要求。 展开更多
关键词 语义分割 图像处理 快速分割卷积神经网络(fast-scnn) SENet 缺陷检测
在线阅读 下载PDF
基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计 被引量:1
4
作者 申江卫 折亦鑫 +4 位作者 舒星 刘永刚 魏福星 夏雪磊 陈峥 《储能科学与技术》 北大核心 2025年第4期1585-1595,共11页
用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随... 用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随机充电数据,使用单一卷积神经网络架构从中自适应提取老化特征,并采用蜣螂优化算法对其参数寻优,建立了多阶段模型。仅使用短时随机原始充电电压数据即可实现电池健康状态估计,且有效适用于不同充电模式和充电速率。实验测试验证结果表明,使用连续5 s(100个数据点)的原始电压时序数据,在恒流-恒压充电模式下,锂电池健康状态估计结果平均绝对误差小于2.07%,在多阶段恒流充电模式下,锂电池健康状态估计结果平均绝对误差小于1.22%。 展开更多
关键词 健康状态 随机充电 数据分割 卷积神经网络 锂离子电池
在线阅读 下载PDF
基于自注意力机制的高分遥感影像语义分割 被引量:2
5
作者 杨军 张金影 康玥 《哈尔滨工程大学学报》 北大核心 2025年第2期344-354,共11页
针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助... 针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助于捕获局部特征;在编码器分支中提出线性的多头自注意力模块以降低模型的计算复杂度;设计一个解码器来恢复特征图分辨率,通过级联操作整合各层级的特征并生成高分辨率的语义分割结果。所提算法在ISPRS Vaihingen和Potsdam数据集上的分割结果的mF1分别达到了90.77%和92.36%,与目前主流算法相比,不透水表面、建筑、低矮植物、树木类的分割准确率及总体分割准确率均有提高。本文算法构建的线性多头自注意力网络是一种高效的高分辨率遥感影像语义分割模型。 展开更多
关键词 高分辨率遥感影像 多头自注意力 深度可分离卷积 语义分割 特征提取 卷积神经网络 编码器 解码器
在线阅读 下载PDF
基于样本迭代优化策略的密集连接多尺度土地覆盖语义分割 被引量:1
6
作者 郑宗生 高萌 +3 位作者 周文睆 王政翰 霍志俊 张月维 《自然资源遥感》 北大核心 2025年第2期11-18,共8页
针对分割结果小尺度地物遗漏、连续地物缺乏完整性问题,提出密集连接多尺度语义分割模型(densely connected multi-scale semantic segmentation network, DMS-Net),实现土地覆盖分割。通过多尺度密集连接空洞空间卷积金字塔池化(multi-... 针对分割结果小尺度地物遗漏、连续地物缺乏完整性问题,提出密集连接多尺度语义分割模型(densely connected multi-scale semantic segmentation network, DMS-Net),实现土地覆盖分割。通过多尺度密集连接空洞空间卷积金字塔池化(multi-scale dense connected atrous spatial convolution pyramid pooling module, MDCA)和条形池化(spatial pyramid pooling, SP)提取多尺度和空间连续性地物;利用特征增强双注意力并联模块(position paralleling channel attention module, PPCA)衡量特征权重,实现高效表达;采用浅层特征级联模块(cascade low-level feature fusion, CLFF)捕捉被忽略的浅层特征,进一步补充细节。实验结果表明:DMS-Net模型在迭代扩充数据集上的总体精度(overall accuracy, OA)达到89.97%,平均交并比(mean intersection over union, mIoU)达到75.59%,高于传统机器学习方法及U-Net, PSPNet, Deeplabv3+等深度学习模型。分割结果显示,地物结构完整且边缘分割明晰,在实现多尺度的土地覆盖遥感信息提取分析中具有较好的实用价值。 展开更多
关键词 深度学习 全卷积神经网络 多尺度 语义分割 土地覆盖
在线阅读 下载PDF
基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络 被引量:1
7
作者 陶永鹏 柏诗淇 周正文 《计算机应用》 北大核心 2025年第7期2378-2386,共9页
脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人... 脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人力资源。为了简化网络设计流程并自动获取最优的网络结构,提出一种基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络(NASCT-Net),以在构建用于多模态MRI脑肿瘤分割的网络架构的过程中,提高分割的精确度。首先,将神经架构搜索(NAS)技术应用于编码器的构建,形成可堆叠的NAS编解码模块,以自动优化适用于脑胶质瘤精准分割的网络架构;其次,在编码器底层集成基于Transformer的特征编码模块,以增强对肿瘤各组之间的相对位置和全局信息的表征能力;最后,通过构建体积加权Dice损失函数(VWDiceLoss),解决前景与背景的不平衡问题。在BraTS2019脑肿瘤数据集上与Swin-Unet等方法进行比较的实验结果表明,NASCT-Net的平均Dice相似系数(DSC)提高了0.009,同时平均Hausdorff距离(HD)降低了1.831 mm,验证了NASCT-Net在提高脑肿瘤多组织分割精度方面的有效性。 展开更多
关键词 网络架构 神经网络架构搜索 脑肿瘤分割 卷积神经网络 TRANSFORMER
在线阅读 下载PDF
用于铁路场景语义分割的改进动态图卷积神经网络 被引量:1
8
作者 王卫东 刘延 +3 位作者 邱实 刘贤华 魏晓 王劲 《计算机辅助设计与图形学学报》 北大核心 2025年第1期139-147,共9页
针对目前在铁路场景语义分割中存在的数据获取成本高、分割精度低、泛化能力差等问题,提出了一种基于改进动态图卷积神经网络的铁路场景语义分割方法.首先利用高分辨率的无人机采集铁路场景的多视角图像,并通过结构运动恢复与基于面片... 针对目前在铁路场景语义分割中存在的数据获取成本高、分割精度低、泛化能力差等问题,提出了一种基于改进动态图卷积神经网络的铁路场景语义分割方法.首先利用高分辨率的无人机采集铁路场景的多视角图像,并通过结构运动恢复与基于面片的多视角立体视觉算法生成铁路场景的三维点云;然后在动态图卷积神经网络中引入空间注意力模块,增强网络结构的分割精度与泛化性;最后通过改进后的图卷积神经网络对预处理后的铁路场景点云完成高精度的语义分割.实验阶段采用的铁路场景包括桥梁段、路基段与联络线,共计11个区域.以平均交并比为评价指标,与动态图卷积神经网络、PointNet++进行对比,研究结果表明,基于图像点云训练的改进动态图卷积神经网络对于铁路场景语义分割具有更高的精度,与动态图卷积神经网络、PointNet++相比,分割精度分别提高3.3个百分点与6.0个百分点,且具有更好的泛化能力. 展开更多
关键词 铁道工程 点云语义分割 无人机点云 卷积神经网络
在线阅读 下载PDF
改进的U-Net卷积网络在遥感影像地物分类中的应用 被引量:1
9
作者 苟长龙 庞敏 杨扬 《测绘通报》 北大核心 2025年第3期150-155,共6页
地物分类在环境监测、资源管理和城市规划中具有重要作用,但光谱相似性、噪声干扰及自然与人造地物混杂等因素,使得分类过程面临各种挑战。为提高分类精度,并增强模型的稳健性,本文提出了一种基于U-Net卷积网络架构且结合Transformer自... 地物分类在环境监测、资源管理和城市规划中具有重要作用,但光谱相似性、噪声干扰及自然与人造地物混杂等因素,使得分类过程面临各种挑战。为提高分类精度,并增强模型的稳健性,本文提出了一种基于U-Net卷积网络架构且结合Transformer自注意力机制的深度学习网络。在兰州市遥感影像数据集上的试验表明,该模型在平均分类精度(mAcc)、平均交并比(mIoU)和平均F1分数(m F1)等指标上均优于PSPNet、DeeplabV3、Segformer和Swin-T模型。该模型不仅提高了分类精度,还实现了较高的推理速度,展现出在复杂地物场景中的应用潜力,为遥感影像分类提供了新思路。 展开更多
关键词 深度学习 地物分类 卷积神经网络 遥感影像 语义分割
在线阅读 下载PDF
基于改进DeepLabv3+的安全帽佩戴分割算法
10
作者 邵晓艳 董文永 +2 位作者 赵雪专 李玲玲 薄树奎 《西南大学学报(自然科学版)》 北大核心 2025年第7期185-195,共11页
针对物流园区空间跨度大、作业设备繁多导致安全帽佩戴检测分割难度增加的问题,提出一种基于改进DeepLabv3+的安全帽佩戴分割算法。该算法采用ResNet-101膨胀残差网络进行特征提取;在编码阶段引入卷积注意力机制融合模块,有效增强特征... 针对物流园区空间跨度大、作业设备繁多导致安全帽佩戴检测分割难度增加的问题,提出一种基于改进DeepLabv3+的安全帽佩戴分割算法。该算法采用ResNet-101膨胀残差网络进行特征提取;在编码阶段引入卷积注意力机制融合模块,有效增强特征区域表征能力;在特征提取阶段引入图像特征网格化模块,将低分辨率图像进行平均切分,有助于获得局部图像的小目标特征。将该算法在SHWD(Safety Helmet Wearing Detect)数据集中训练测试,结果表明:算法的像素准确率达到89.23%,相比DeepLabv3+提升了2.21个百分点,有效提高了复杂场景下物流园区安全帽佩戴分割精度。 展开更多
关键词 神经网络 注意力机制 膨胀卷积 语义分割
在线阅读 下载PDF
考虑实际退役电池常用SOC范围的SOH预测
11
作者 杜燕 陶骁 +3 位作者 苏建徽 李金中 谢毓广 朱轲 《太阳能学报》 北大核心 2025年第2期99-105,共7页
针对退役电池老化程度较高,在动力电池上采用的健康特征无法满足退役电池实际工作时的荷电状态(SOC)的范围的问题,提出在退役电池实际使用时SOC的主要分布范围内获取电池充电数据,通过获取的数据预测SOH,提升算法运用的实用性。在此基础... 针对退役电池老化程度较高,在动力电池上采用的健康特征无法满足退役电池实际工作时的荷电状态(SOC)的范围的问题,提出在退役电池实际使用时SOC的主要分布范围内获取电池充电数据,通过获取的数据预测SOH,提升算法运用的实用性。在此基础上,针对传统SOH估计算法提取能反映电池老化特性的特征较困难,且无法完全利用数据的问题,提出利用一维深度卷积神经网络(CNN)提取电池特征,再将特征输入到长短期神经网络(LSTM)中预测SOH。利用美国国家航空航天局(NASA)锂离子电池随机数据集对算法进行验证,该方法能采取较少的电池片段来实现准确的SOH估算,且相较于传统的SOH算法,更能贴合退役电池实际使用需求。 展开更多
关键词 退役电池 电池健康状态 电池荷电状态 卷积神经网络 长短期神经网络 充电数据片段
在线阅读 下载PDF
融合显著边界约束的弱监督语义分割方法
12
作者 白雪飞 张丽娜 王文剑 《计算机工程与应用》 北大核心 2025年第19期214-225,共12页
针对现有弱监督语义分割方法存在的类激活不足、伪标签边界不清晰的问题,提出了融合显著边界约束的弱监督语义分割方法。提出由共享参数的孪生网络作为类激活图生成网络,将仿射变换前后的图像作为孪生网络两个分支的输入,得到不同的类... 针对现有弱监督语义分割方法存在的类激活不足、伪标签边界不清晰的问题,提出了融合显著边界约束的弱监督语义分割方法。提出由共享参数的孪生网络作为类激活图生成网络,将仿射变换前后的图像作为孪生网络两个分支的输入,得到不同的类激活图后,通过一致性损失函数融合仿射变换前后的互补信息,以生成具有完整信息的类激活图。设计显著性修正模块,在类激活图中引入边界约束,抑制背景信息的错误激活;同时,设计显著性亲和模块从显著图中学习像素之间的亲和矩阵,进一步细化初始伪标签,提升模型的语义分割性能。实验结果表明,该方法在PASCAL VOC 2012验证集上的mIoU值为71.4%,与基线相比,性能提升了2.1个百分点,测试集上的mIoU值为70.8%;在COCO 2014验证集上的mIoU值为39.2%,展现了良好的分割结果,该方法可以更好地完成弱监督语义分割任务。 展开更多
关键词 弱监督语义分割 图像级标签 TRANSFORMER 卷积神经网络 孪生网络 显著图
在线阅读 下载PDF
梯度区分与特征范数驱动的开放世界目标检测
13
作者 张英俊 闫薇薇 +2 位作者 谢斌红 张睿 陆望东 《计算机应用》 北大核心 2025年第7期2203-2210,共8页
开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDF... 开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDFN-OWOD)网络模型。针对未知类召回率偏低的问题,提出梯度区分性表征模块(GDRM),即利用反向传播的梯度差异区分未知类别和背景,以提高未知类召回率;此外,引入基于图分割的框聚类(GSBC)算法将物体边界框的确定建模为图分解问题,从而减少冗余的边界框,进而降低模型的计算量;针对未知类误识别的问题,采用基于特征范数的分类器(FN-BC)选择性能最优的卷积层识别已知和未知类别,以达到更高的识别准确率。在M-OWODB数据集上的实验结果表明,与最优对比模型相比在T1、T2、T3任务中GDFN-OWOD的未知类召回率分别提升了1.1、2.1、0.9个百分点,而绝对开集误差(A-OSE)分别降低了35.1%、28.7%和12.2%。可见,与现有的OWOD网络模型相比,所提网络模型有效缓解了未知类的召回率偏低和误识别的问题。 展开更多
关键词 开放世界目标检测 反向传播梯度 图分割算法 特征范数 卷积神经网络
在线阅读 下载PDF
半监督学习模型下的露天矿高陡岩质边坡裂隙识别研究
14
作者 江松 章睿 +4 位作者 崔智翔 王会杰 刘仲光 吴祥业 饶彬舰 《安全与环境学报》 北大核心 2025年第10期3821-3829,共9页
针对传统露天矿边坡人工检测效率低、主观性强的问题,提出一种基于半监督学习的裂隙智能识别方法,旨在实现高效、精准的自动化检测。构建双模型协同训练框架:通过无人机采集露天矿高陡岩质边坡裂隙图像数据,利用少量人工标注样本与大量... 针对传统露天矿边坡人工检测效率低、主观性强的问题,提出一种基于半监督学习的裂隙智能识别方法,旨在实现高效、精准的自动化检测。构建双模型协同训练框架:通过无人机采集露天矿高陡岩质边坡裂隙图像数据,利用少量人工标注样本与大量未标注数据,设计主模型与评判模型协同迭代优化的半监督学习策略,分析模型在复杂背景下的特征学习能力,并验证半监督机制对性能的提升作用。结果表明:双模型协同训练框架在裂隙识别的精确率、召回率、交并比和平均像素精度分别达到91.9%、91.5%、88.7%和90.2%,均显著优于单一监督模型与传统图像分割算法。研究通过半监督学习策略融合标注数据与未标注数据的特征信息,为露天矿边坡裂隙检测提供了高效、鲁棒的技术路径,可降低对人工标注的依赖,提升复杂场景下的裂隙识别精度。 展开更多
关键词 安全工程 裂隙识别 图像分割 半监督学习 掩膜区域卷积神经网络 U形网络
在线阅读 下载PDF
改进DeepLabv3+的道路表面裂缝检测方法
15
作者 杨萍 张汐 《计算机工程》 北大核心 2025年第4期261-270,共10页
有效的道路表面裂缝检测是维护道路安全、延长道路寿命的关键。针对传统道路表面裂缝检测方法存在的难以识别细小裂缝、分割断裂以及分割精度低等问题,提出了一种改进DeepLabv3+的道路表面裂缝检测方法,旨在降低模型参数量的同时提高裂... 有效的道路表面裂缝检测是维护道路安全、延长道路寿命的关键。针对传统道路表面裂缝检测方法存在的难以识别细小裂缝、分割断裂以及分割精度低等问题,提出了一种改进DeepLabv3+的道路表面裂缝检测方法,旨在降低模型参数量的同时提高裂缝检测的准确性。首先,使用优化后的MobileNetv2网络替换基础DeepLabv3+模型的主干网络,以降低模型的参数量和复杂度,提高运行速度;其次,将条形池化模块(SPM)融入空洞空间金字塔池化(ASPP)模块,使得网络能够捕获到更多的裂缝上下文信息,保留裂缝细小部分的特征;最后,引入卷积块注意力模块(CBAM),使网络更加关注图像中对裂缝检测起决定作用的像素区域,增强裂缝图像的特征表达能力。实验结果显示,改进DeepLabv3+模型的平均像素准确率(MPA)为87.85%,平均交并比(MIoU)为80.53%,准确率为97.51%,精确率为88.65%,F1值为88.24%,相比于基础DeepLabv3+模型分别提高了1.77%、2.03%、0.30%、2.25%和1.51%,且高于U-Net、HR-Net和PSP-Net模型。此外,改进DeepLabv3+模型的参数量为6.382×10~6,是基础DeepLabv3+模型的88.3%,实时性更好,更适用于道路表面裂缝检测任务。 展开更多
关键词 裂缝检测 语义分割 卷积神经网络 条形池化模块 注意力机制
在线阅读 下载PDF
用于医学图像分割的多层特征交叉融合网络研究
16
作者 刘玉 何立风 +1 位作者 朱纷 张梦颖 《陕西科技大学学报》 北大核心 2025年第3期181-189,共9页
针对U型结构处理医学图像分割任务时存在的编解码器特征差异大、浅层特征丢失、抽象特征学习不足等缺陷,设计了一种多层特征交叉融合网络(MFCF-Net).首先,设计了深度注意力聚合模块,采用深度可分离卷积提取多尺度特征,并通过混合注意力... 针对U型结构处理医学图像分割任务时存在的编解码器特征差异大、浅层特征丢失、抽象特征学习不足等缺陷,设计了一种多层特征交叉融合网络(MFCF-Net).首先,设计了深度注意力聚合模块,采用深度可分离卷积提取多尺度特征,并通过混合注意力机制抑制背景的影响;其次,设计了多尺度快速融合模块,融合通过不同池化策略提取的多尺度特征信息,以丰富深层网络的抽象特征;最后,通过编码支路对深层网络细节信息进行补充.在NIH数据集、ISIC2017数据集和ISIC2018数据集上进行的实验结果表明MFCF-Net的分割效果优于其他先进的网络,尤其在NIH数据集上,DSC达到了0.8837,IoU达到了0.9992. 展开更多
关键词 医学图像分割 U型结构 多尺度融合 注意力机制 卷积神经网络
在线阅读 下载PDF
基于深度学习的车辆轻微损伤检测算法
17
作者 杨长春 王宇鹏 +1 位作者 胡玉蝶 朱文涛 《计算机工程与设计》 北大核心 2025年第10期2986-2993,共8页
针对车辆损伤检测精确度不足的问题,提出了一种基于YOLOv8改进的实例分割模型。该算法设计了SimPConv模块,在充分保留数据特征信息的基础上融入了SimAM注意力机制,有效降低了目标特征细粒度的丢失。为增强模型对局部特征信息的捕捉能力... 针对车辆损伤检测精确度不足的问题,提出了一种基于YOLOv8改进的实例分割模型。该算法设计了SimPConv模块,在充分保留数据特征信息的基础上融入了SimAM注意力机制,有效降低了目标特征细粒度的丢失。为增强模型对局部特征信息的捕捉能力,提出了新的局部注意力机制SPPRNet。同时,为提升网络多尺度信息的特征提取能力,设计了新的特征融合模块。实验结果表明,SMF-YOLO在APb和APm指标上分别实现了10%、10.5%的提升,且GFLOPs仅为99.7,达到了计算复杂度更低而精度更高的效果。 展开更多
关键词 机器视觉 实例分割 汽车损伤检测 卷积神经网络 注意力机制 多尺度特征融合 深度学习
在线阅读 下载PDF
深度学习在结肠息肉图像分割中的研究综述 被引量:3
18
作者 李国威 刘静 +1 位作者 曹慧 姜良 《计算机科学与探索》 北大核心 2025年第5期1198-1216,共19页
结肠息肉是一种可能发展为结直肠癌的胃肠道异常生长组织,因此,早期检测和切除结肠息肉对预防结直肠癌具有重要意义。近年来,深度学习技术在结肠息肉图像分割领域中的应用取得了显著进展,大幅提高了分割的准确性和自动化水平。针对深度... 结肠息肉是一种可能发展为结直肠癌的胃肠道异常生长组织,因此,早期检测和切除结肠息肉对预防结直肠癌具有重要意义。近年来,深度学习技术在结肠息肉图像分割领域中的应用取得了显著进展,大幅提高了分割的准确性和自动化水平。针对深度学习在结肠息肉图像分割中的研究展开综述,介绍了多种结肠息肉成像方式及包括图片和视频在内的常用数据集,并详细说明了这些数据集的特点。深入阐述了基于深度学习的结肠息肉分割方法,涵盖了全卷积网络、Mask R-CNN、生成对抗网络、U-Net、Transformer以及多网络融合模型,其中重点强调了UNet及其变体在结肠息肉图像分割中的应用,分析了其结构改进、性能提升和实际应用效果。同时,综合对比了各网络模型的主要改进思路、优缺点及其分割结果。指出了当前深度学习在该领域面临的主要挑战,并对未来的研究方向进行了相应的展望。 展开更多
关键词 结肠息肉分割 深度学习 医学图像 卷积神经网络 U-Net
在线阅读 下载PDF
超深层走滑断裂典型分段及其内部缝网系统发育的差异性研究——以塔里木盆地富满地区F_(Ⅰ)17断裂带为例 被引量:1
19
作者 谭笑林 张银涛 +7 位作者 吕文雅 谢舟 曾联波 袁敬一 熊昶 宋逸辰 李浩 张克宁 《地质论评》 北大核心 2025年第4期1403-1413,共11页
走滑断裂控制的缝网系统是塔里木盆地超深层碳酸盐岩的有效储集空间和主要渗流通道,不同典型分段的缝网系统分布特征存在较大差异。笔者等基于卷积神经网络的方法对富满地区F_(Ⅰ)17断裂带进行识别并划分典型分段,通过FDI的方法定量刻... 走滑断裂控制的缝网系统是塔里木盆地超深层碳酸盐岩的有效储集空间和主要渗流通道,不同典型分段的缝网系统分布特征存在较大差异。笔者等基于卷积神经网络的方法对富满地区F_(Ⅰ)17断裂带进行识别并划分典型分段,通过FDI的方法定量刻画典型分段缝网系统发育带宽度,根据单井产能分析反映典型分段及其内部缝网系统分布特征。富满地区F_(Ⅰ)17断裂带可划分为叠接拉分段、叠接挤压段、平移段和转折侧接段等4种类型,总共14个分段,其中转折侧接段又可进一步划分为侧接挤压段和侧接拉分段。不同典型分段缝网系统发育带平均宽度存在明显差异,在发育规模相近的情况下,缝网系统发育程度存在转折侧接段>叠接挤压段>叠接拉分段>平移段的规律,其中叠接拉分段缝网系统有效性强于叠接挤压段。叠接段和转折侧接段的两侧,以及平移段中的主干断裂、主干断裂与次级断裂交汇部位均为缝网系统优势发育部位。叠(侧)接挤压段的中部具有一定的缝网系统发育程度,但叠(侧)接拉分段的中部发育程度较弱。结合典型分段缝网系统发育带宽度与单井产能分析结果,最终建立了超深层走滑断裂典型分段缝网系统非均质发育模式。 展开更多
关键词 超深层走滑断裂 典型分段 缝网系统 卷积神经网络 FDI 单井产能 富满地区
在线阅读 下载PDF
新解码器的CNNs-Transformers融合网络及其病理图像肿瘤分割应用 被引量:1
20
作者 马丽晶 王朝立 +2 位作者 孙占全 程树群 王康 《小型微型计算机系统》 北大核心 2025年第6期1442-1449,共8页
病理图像是肿瘤诊断的"金标准",但超高分辨率的病理图像使得医生需要消耗大量的精力和时间,而且诊断结果主观性比较强.随着人工智能技术的发展,深度学习模型提供了计算机代替人对病理图像进行快速、准确和可靠诊断的可能性.然... 病理图像是肿瘤诊断的"金标准",但超高分辨率的病理图像使得医生需要消耗大量的精力和时间,而且诊断结果主观性比较强.随着人工智能技术的发展,深度学习模型提供了计算机代替人对病理图像进行快速、准确和可靠诊断的可能性.然而,目前大多数的网络更注重如何在编码器部分提取更准确的特征,而对于同等重要的解码器部分的结构设计研究则稍显不足.针对该问题,本文提出了由三类上采样模块组成的新网络,而编码器部分采用Swin Transformer和ConvNeXt作为网络的双分支并行独立结构.三类上采样模块分别是多重转置卷积采样、双线性上采样和Swin Transformer上采样,其特点是可以充分利用病理图像特征之间局部和全局的依赖关系.该网络分别在肝癌数据集和GLAS数据集上进行了验证,并与不同类型的主流网络进行了对比,性能指标皆达到比较好的结果. 展开更多
关键词 医学图像分割 深度学习 卷积神经网络 Swin Transformer
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部