期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
FSS-kernel与FastICA融合的盲源分离算法研究 被引量:1
1
作者 汪道德 何鹏举 龙莉莉 《计算机工程与应用》 CSCD 北大核心 2015年第2期209-212,270,共5页
Fast ICA算法有着比传统ICA算法更快、更稳健的收敛速度,但由于其选用的非线性函数不能很好地符合源信号的统计特性,恢复结果并不理想。针对该问题,提出了一种有限支持样本核函数(FSS-kernel)与Fast ICA融合的盲源分离算法。该方法是通... Fast ICA算法有着比传统ICA算法更快、更稳健的收敛速度,但由于其选用的非线性函数不能很好地符合源信号的统计特性,恢复结果并不理想。针对该问题,提出了一种有限支持样本核函数(FSS-kernel)与Fast ICA融合的盲源分离算法。该方法是通过FSS-kernel算法估计得出源信号概率密度函数,结合Fast ICA算法,实现混合信号的盲分离。仿真结果表明,该方法能够有效地完成混叠信号的分离,通过与传统ICA算法及Fast ICA算法比较,证明了该方法具有更高的分离精度和自适应能力。 展开更多
关键词 快速独立分量分析(fast ICA)算法 有限支持样本核函数(FSS-kernel)算法 盲源分离 算法融合
在线阅读 下载PDF
基于FKPCA与双决策子空间的人脸识别 被引量:1
2
作者 张建明 杨锋清 +1 位作者 房芳 段丽 《计算机工程》 CAS CSCD 北大核心 2010年第18期182-184,共3页
针对人脸识别中的小样本问题,提出一种快速核主元分析(FKPCA)与双决策子空间的人脸识别方法。利用FKPCA方法将原始样本空间映射到高维空间,在高维空间中实现原始样本的降维,在双决策子空间分别用Fisher准则和类间散布判决准则提取常规... 针对人脸识别中的小样本问题,提出一种快速核主元分析(FKPCA)与双决策子空间的人脸识别方法。利用FKPCA方法将原始样本空间映射到高维空间,在高维空间中实现原始样本的降维,在双决策子空间分别用Fisher准则和类间散布判决准则提取常规信息和非常规信息,通过加权欧式距离进行信息融合并用最近邻分类器进行识别。在ORL人脸库上的实验结果表明,该方法具有较高的识别率与较快的识别速度。 展开更多
关键词 快速核主元分析 双决策子空间 特征融合 加权欧式距离
在线阅读 下载PDF
基于Kernel PCA的人脸识别算法的探讨 被引量:2
3
作者 张晓红 汤晓华 沈晓红 《北京工商大学学报(自然科学版)》 CAS 2008年第3期37-39,共3页
扼要阐明抽取二维人脸图像特征方法并进行人脸识别,结合实验结果进行分析比较主元分析和核主元分析方法的优缺点,得出核主元分析方法在人脸识别算法中误识率低,解决了维数和小样本问题,能准确快速识别人脸的结论.
关键词 人脸识别 主元分析法 核主元分析法
在线阅读 下载PDF
基于K-I-ELM多模型集成的分布式光伏出力短期预测方法 被引量:1
4
作者 江卓翰 周胜瑜 +2 位作者 何禹清 周任军 孙辰昊 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期146-152,共7页
为响应“双碳”目标,高比例新能源接入的新型电力系统已成为下一个发展目标。光伏作为当前电力系统能源发电主体形式之一,其出力特性数据尚存在多源、异构及高维等分布特点,导致不同特征作用机理、机制较为复杂,继而加大分布式光伏系统... 为响应“双碳”目标,高比例新能源接入的新型电力系统已成为下一个发展目标。光伏作为当前电力系统能源发电主体形式之一,其出力特性数据尚存在多源、异构及高维等分布特点,导致不同特征作用机理、机制较为复杂,继而加大分布式光伏系统出力的预测难度。为此,首先构建核主成分分析(kernel principle component analysis,KPCA)模型,通过核函数在特征空间中依据不同特征的有效信息蕴含度提取主成分;然后采用信息熵(information entropy,IE)模型,根据各主成分信息负载度量加权系数,综合求解相应作用权重;最后依据特征评估结果,针对性设置极限学习机(extreme learning machine,ELM)网络参数,降低预测不确定度。最终整合多类别数据挖掘模型,构建K-I-ELM预测方法,在复杂数据环境下实施光伏出力短期预测。基于某实际台区光伏发电数据进行案例分析,论证所提方法针对不同数据环境的适应性及较高的预测精度。 展开更多
关键词 信息熵 核主成分分析 极限学习机 短期预测 光伏出力
在线阅读 下载PDF
轻量化量子跟踪系统复合轴精密控制
5
作者 于帅北 曹艳波 +2 位作者 费强 王芳 孙景旭 《光学精密工程》 CSCD 北大核心 2024年第23期3469-3478,共10页
基于量子加密的星地激光通信是一种比传统射频通信传输带宽高、数据安全性强的远程信息传输技术,具有高码率、小型化和低功耗等优点。为了实现星地之间激光链路的联通,地面光学终端与卫星光学载荷之间需要在通信时间窗口保证高精度跟踪... 基于量子加密的星地激光通信是一种比传统射频通信传输带宽高、数据安全性强的远程信息传输技术,具有高码率、小型化和低功耗等优点。为了实现星地之间激光链路的联通,地面光学终端与卫星光学载荷之间需要在通信时间窗口保证高精度跟踪瞄准,然而,地面光学终端在复杂环境中会受到多种传输干扰,需要轻量化的地面激光跟踪终端的精密结构设计,以及稳定可靠的跟踪控制算法。设计了一种基于双探测器的复合轴跟踪系统,整机结构轻量化设计,大口径成像系统使用一体化整体设计,有效质量相比传统结构减轻了50%以上,并采用跟踪架和快速反射镜两级跟踪的控制方式,采用参数识别和基于主元分析神经网络算法的自动调谐优化控制技术,通信时间窗口内跟踪误差PV值从20″以上减少到5″以下,提高了轻量化激光通信跟踪系统的性能,为星际激光通信技术提供高效的跟踪瞄准平台,从而实现更高效的量子加密激光通信。 展开更多
关键词 激光通信 复合轴控制 压电陶瓷快速反射镜 PID控制 主元分析神经网络
在线阅读 下载PDF
基于核主成分分析的地震属性优化方法及应用 被引量:44
6
作者 印兴耀 孔国英 张广智 《石油地球物理勘探》 EI CSCD 北大核心 2008年第2期179-183,124-125+246,共8页
传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以... 传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以提取出数据之间的非线性关系。本文从方法原理概述入手,分析了一般主成分分析在处理非线性问题上存在的不足,阐述了基于核函数的主成分分析方法,并将其首次应用于地震属性的降维优化中。应用结果表明:基于核函数的主成分分析方法具有优秀的特征提取性能。 展开更多
关键词 属性降维优化 主成分分析(PCA) 核函数 核主成分分析(KPCA)
在线阅读 下载PDF
核主成分分析与随机森林相结合的变压器故障诊断方法 被引量:49
7
作者 胡青 孙才新 +1 位作者 杜林 李剑 《高电压技术》 EI CAS CSCD 北大核心 2010年第7期1725-1729,共5页
油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异... 油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异性是影响群体性能的主要因素,针对DGA特征量较少训练得到的分类器差异不大的问题,提出将核主成分分析(kernel principle component analysis,KPCA)与随机森林方法相结合,KPCA将样本从低维的状态空间非线性地映射到高维的核空间,在核空间用随机森林方法训练得到分类器群。对DGA故障样本以及加噪样本的诊断实验结果表明,KPCA能够有效地提取故障特征,用核特征量建模的诊断效果优于直接采用DGA特征量,分类器群的诊断效果以及抗干扰能力均高于单个分类器。 展开更多
关键词 电力变压器 故障诊断 溶解气体分析 分类器群 随机森林 核主成分分析
在线阅读 下载PDF
基于改进的F-score与支持向量机的特征选择方法 被引量:33
8
作者 谢娟英 王春霞 +1 位作者 蒋帅 张琰 《计算机应用》 CSCD 北大核心 2010年第4期993-996,共4页
将传统F-score度量样本特征在两类之间的辨别能力进行推广,提出了改进的F-score,使其不但能够评价样本特征在两类之间的辨别能力,而且能够度量样本特征在多类之间的辨别能力大小。以改进的F-score作为特征选择准则,用支持向量机(SVM)评... 将传统F-score度量样本特征在两类之间的辨别能力进行推广,提出了改进的F-score,使其不但能够评价样本特征在两类之间的辨别能力,而且能够度量样本特征在多类之间的辨别能力大小。以改进的F-score作为特征选择准则,用支持向量机(SVM)评估所选特征子集的有效性,实现有效的特征选择。通过UCI机器学习数据库中六组数据集的实验测试,并与SVM、PCA+SVM方法进行比较,证明基于改进F-score与SVM的特征选择方法不仅提高了分类精度,并具有很好的泛化能力,且在训练时间上优于PCA+SVM方法。 展开更多
关键词 F-score 支持向量机 特征选择 主成分分析 核函数主成分分析
在线阅读 下载PDF
基于核主元分析和邻近支持向量机的汽轮机凝汽器过程监控和故障诊断 被引量:33
9
作者 张曦 阎威武 +1 位作者 刘振亚 邵惠鹤 《中国电机工程学报》 EI CSCD 北大核心 2007年第14期56-61,共6页
提出了基于核主元分析(KPCA)和邻近支持向量机(PSVM)的汽轮机凝汽器过程监控和故障诊断新方法,将数据先用核主元法进行分析和处理,即通过非线性变换将样本数据从输入空间映射到高维特征空间,然后在高维特征空间中进行特征提取,若数据的H... 提出了基于核主元分析(KPCA)和邻近支持向量机(PSVM)的汽轮机凝汽器过程监控和故障诊断新方法,将数据先用核主元法进行分析和处理,即通过非线性变换将样本数据从输入空间映射到高维特征空间,然后在高维特征空间中进行特征提取,若数据的Hotelling’sT2和Q统计量超过控制限,说明有故障发生,则计算样本的非线性主元得分向量,并将其作为输入值送入已训练好的邻近支持向量机进行故障类型识别。该方法可以有效地捕捉变量间的非线性关系,过程监控和故障诊断效果明显好于PCA-PSVM法。汽轮机历史故障特征数据集仿真试验证明了该方法的有效性。 展开更多
关键词 核主元分析 邻近支持向量机 过程监控 故障诊断
在线阅读 下载PDF
基于异类信息特征融合的异步电机故障诊断 被引量:31
10
作者 李学军 李平 +1 位作者 蒋玲莉 曹宇翔 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第1期227-233,共7页
针对异步电机单一故障信号的局限性和故障特征存在较强非线性关系的特点,提出一种基于异类信息特征融合的故障诊断方法。以采集的振动信号和电流信号为原始信源,分别提取它们的时域特征和小波包熵特征,采用核主元分析对原始特征的组合... 针对异步电机单一故障信号的局限性和故障特征存在较强非线性关系的特点,提出一种基于异类信息特征融合的故障诊断方法。以采集的振动信号和电流信号为原始信源,分别提取它们的时域特征和小波包熵特征,采用核主元分析对原始特征的组合进行降维融合,得到信息互补的特征量,将融合特征通过支持向量机进行模式识别。异步电机转子和轴承故障诊断实例表明,基于核主元分析的异类信息特征融合方法,可充分利用异类信源的冗余互补信息和特征数据之间的非线性关系,更全面地表征设备运行状态,相比单参数法及同类信息特征融合法具有更高的诊断精度。 展开更多
关键词 异类信息 特征融合 异步电机 故障诊断 核主元分析
在线阅读 下载PDF
基于组合核函数KPCA的人脸识别研究 被引量:11
11
作者 赵剑华 王顺芳 张飞龙 《计算机工程与设计》 CSCD 北大核心 2014年第2期631-635,共5页
为克服基于单核函数KPCA的人脸识别方法的局限性,将几个单核函数合理组合以充分利用它们的互补特性,所形成的组合核函数性能将优于组合中的各单核函数。将高斯核函数分别与线性核函数、多项式核函数组合形成新的核函数应用于基于KPCA的... 为克服基于单核函数KPCA的人脸识别方法的局限性,将几个单核函数合理组合以充分利用它们的互补特性,所形成的组合核函数性能将优于组合中的各单核函数。将高斯核函数分别与线性核函数、多项式核函数组合形成新的核函数应用于基于KPCA的人脸识别方法。分别基于ORL和YALE人脸库数据选择了合理的组合核函数参数讨论了组合核函数的整体性能。实验结果表明,该组合核函数KPCA方法对人脸识别率和识别时间较PCA和单核KPCA有很大的优越性。 展开更多
关键词 核主成分分析 组合核函数 高斯核 多项式核 人脸识别
在线阅读 下载PDF
基于横切面微观构造图像的木材识别方法 被引量:12
12
作者 刘子豪 祁亨年 +1 位作者 张广群 汪杭军 《林业科学》 EI CAS CSCD 北大核心 2013年第11期116-121,共6页
提出一种基于核主成分分析(KPCA)和自适应增强(AdaBoost)的木材识别算法。通过把图像投影到KPCA高维空间,利用PCA方法对该空间中的数据进行特征提取和压缩,使用Gentle AdaBoost进行分类。结果表明:本方法对基于横切面微观构造图像的木... 提出一种基于核主成分分析(KPCA)和自适应增强(AdaBoost)的木材识别算法。通过把图像投影到KPCA高维空间,利用PCA方法对该空间中的数据进行特征提取和压缩,使用Gentle AdaBoost进行分类。结果表明:本方法对基于横切面微观构造图像的木材识别,具有较高的识别率和算法鲁棒性且运行时间快的特点。 展开更多
关键词 核主成分分析 自适应增强 图像压缩 木材识别 计算机视觉
在线阅读 下载PDF
采用多层核学习机的柴油机气门机构故障诊断 被引量:6
13
作者 王涛 李艾华 +1 位作者 姚良 蔡艳平 《振动.测试与诊断》 EI CSCD 北大核心 2010年第4期462-464,共3页
针对柴油机缸盖振动信号的非平稳性以及多种气门故障的线性不可分问题,提出了一种组合核主元分析和支持向量机的多层核学习机方法。该方法使用核主元分析技术从原始特征中提取非线性主元,将其输入到由"一对多"算法构建的支持... 针对柴油机缸盖振动信号的非平稳性以及多种气门故障的线性不可分问题,提出了一种组合核主元分析和支持向量机的多层核学习机方法。该方法使用核主元分析技术从原始特征中提取非线性主元,将其输入到由"一对多"算法构建的支持向量机多分类器中,实现了多种气门故障的定量诊断。试验结果表明,在小样本条件下,该方法能准确识别气门机构的6种状态,且识别精度及测试速度均优于单独使用多类支持向量机方法。 展开更多
关键词 核方法 特征提取 模式分类 核主元分析 支持向量机
在线阅读 下载PDF
基于最优匹配跟踪算法的单通道机械信号盲源分离 被引量:13
14
作者 董绍江 汤宝平 张焱 《振动工程学报》 EI CSCD 北大核心 2012年第6期724-731,共8页
在形态学滤波的基础上,结合匹配跟踪算法(Matching Pursuit,MP)和盲源分离算法(Blind Source Separation,BSS)各自的特点,提出了一种基于最优匹配跟踪信号分解的欠定盲源分离算法。利用MP算法将非线性信号通过投影分解,在分解过程中利... 在形态学滤波的基础上,结合匹配跟踪算法(Matching Pursuit,MP)和盲源分离算法(Blind Source Separation,BSS)各自的特点,提出了一种基于最优匹配跟踪信号分解的欠定盲源分离算法。利用MP算法将非线性信号通过投影分解,在分解过程中利用遗传算法寻找最优原子,有效提高了算法匹配的精度和效率。将所得到的匹配分量和滤波后的原始观察信号组成新的多维信号,解决了单通道信号盲分离的欠定问题。利用快速核独立分量分析(Fast Kernel Independent Component Analysis,FastKICA)算法实现信号的盲分离,并分析了分离的不同源信号对于故障的贡献率。将该方法用于仿真信号和实际的轴承试验的信号,试验结果表明算法能够很好地解决单通道信号的盲分离难题。 展开更多
关键词 盲源分离 匹配跟踪 快速核独立分量分析 欠定混合
在线阅读 下载PDF
绝缘子污秽放电的声发射核主成分诊断法 被引量:8
15
作者 李自品 舒乃秋 +1 位作者 李红玲 汪游胤 《高电压技术》 EI CAS CSCD 北大核心 2012年第11期3008-3014,共7页
为了提高污秽绝缘子外绝缘状态的诊断准确度,利用绝缘子污秽放电时产生的声发射信号评定其外绝缘状态。通过绝缘子污秽试验,由高灵敏度声信号监测装置检测绝缘子的污秽放电声发射信号;对提取的声发射信号进行核主成分分析,将样本从低维... 为了提高污秽绝缘子外绝缘状态的诊断准确度,利用绝缘子污秽放电时产生的声发射信号评定其外绝缘状态。通过绝缘子污秽试验,由高灵敏度声信号监测装置检测绝缘子的污秽放电声发射信号;对提取的声发射信号进行核主成分分析,将样本从低维的状态空间非线性的映射到高维核空间,在核空间采用随机森林方法训练得到分类器群,根据分类器群的分类结果对每个测试样本进行投票表决决定其最终分类。分析和诊断试验结果表明,声发射信号的3个原始特征量经核主成分分析后,变换为65个核特征量,有效地提高了分类器群之间的差异性。基于核主成分分析的随机森林模型的状态诊断结果具有很高的准确性。利用污秽放电声发射信号可进行污秽放电阶段的划分,以达到监测绝缘子的外绝缘状态的目的。 展开更多
关键词 绝缘子 声发射信号 核主成分分析(KPCA) 随机森林 污秽放电 诊断
在线阅读 下载PDF
穿戴式跌倒检测中特征向量的提取和降维研究 被引量:6
16
作者 李雷 张帆 +1 位作者 施化吉 周从华 《计算机应用研究》 CSCD 北大核心 2019年第1期103-105,11,共4页
穿戴式跌倒检测中老年人特征属性过多会造成维数灾难,影响后续跌倒检测精度。针对此问题,首先采用时域分析法提取初始特征向量集,用提出的改进核主成分分析算法(IKPCA)对特征向量进行降维,从而获得优质的特征向量集,使得后续的分类具有... 穿戴式跌倒检测中老年人特征属性过多会造成维数灾难,影响后续跌倒检测精度。针对此问题,首先采用时域分析法提取初始特征向量集,用提出的改进核主成分分析算法(IKPCA)对特征向量进行降维,从而获得优质的特征向量集,使得后续的分类具有更好的效果。IKPCA算法首先利用I-RELIEF算法对初始特征向量集进行特征选择,然后计算跌倒特征向量的信息度量和相似度度量;最后根据跌倒特征向量的相似度度量剔除无效的跌倒特征向量。IKPCA算法不但保持核主成分分析算法(KPCA)较好的降维能力,而且扩充了较好的分类能力。利用真实的数据集进行实验,对比分析表明,相比其他算法,IKPCA算法能够得到更优质的特征向量数据集。 展开更多
关键词 跌倒检测 特征向量 核主成分分析 降维
在线阅读 下载PDF
概率核主成分分析及其应用 被引量:6
17
作者 张九龙 邓筱楠 张志禹 《计算机工程与应用》 CSCD 北大核心 2011年第4期165-167,共3页
主成分分析(PCA)、核主成分分析(KPCA)和概率主成分分析(PPCA)是已经取得广泛应用的特征提取方法。提出一种基于概率核主成分分析(PKPCA)的检测液晶屏幕亮点的方法。作为对PPCA的一种非线性扩展,PKPCA在PPCA的基础上引入了核函数方法,... 主成分分析(PCA)、核主成分分析(KPCA)和概率主成分分析(PPCA)是已经取得广泛应用的特征提取方法。提出一种基于概率核主成分分析(PKPCA)的检测液晶屏幕亮点的方法。作为对PPCA的一种非线性扩展,PKPCA在PPCA的基础上引入了核函数方法,因而其捕获模式非线性特征的能力更强。在KPCA和PPCA的基础上推导了PKPCA过程公式,并在检测液晶屏幕亮点的应用中将PKPCA、PPCA、PCA算法进行比较。实验结果表明,PKPCA的检测率和局部信噪比优于其他两者。 展开更多
关键词 主成分分析 核主成分分析 概率主成分分析 亮点检测 概率核主成分分析
在线阅读 下载PDF
基于小波分析与KPCA的人脸识别方法 被引量:6
18
作者 李伟红 龚卫国 +2 位作者 陈伟民 梁毅雄 尹克重 《计算机应用》 CSCD 北大核心 2005年第10期2339-2341,共3页
提出结合小波变换及KPCA的特点获取人脸特征,设计线性SVM分类器进行分类识别。由于KPCA中核函数的参数选择以及训练样本与测试样本的划分对分类识别有一定的影响,为了获得最优的识别效果,在UM IST人脸数据库上进行相应的实验。结果表明... 提出结合小波变换及KPCA的特点获取人脸特征,设计线性SVM分类器进行分类识别。由于KPCA中核函数的参数选择以及训练样本与测试样本的划分对分类识别有一定的影响,为了获得最优的识别效果,在UM IST人脸数据库上进行相应的实验。结果表明本方法可以获得较好的分类识别率,是一种快速、有效的人脸识别方法。 展开更多
关键词 人脸识别 小波变换(WT) 核主元分析(KPCA) 支持向量机(SVM)
在线阅读 下载PDF
求解大样本核主成分分析模型的Lanczos算法 被引量:8
19
作者 陈永良 林楠 李学斌 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2010年第1期222-226,共5页
求解核主成分分析模型的技术关键是确定核矩阵端部的较大特征对。把求解大规模对称矩阵端部特征对问题的基本方法——Lanczos算法应用于核主成分分析模型的求解,设计了大样本核主成分分析模型求解的实用算法。在clapack和nu-TRLan两个... 求解核主成分分析模型的技术关键是确定核矩阵端部的较大特征对。把求解大规模对称矩阵端部特征对问题的基本方法——Lanczos算法应用于核主成分分析模型的求解,设计了大样本核主成分分析模型求解的实用算法。在clapack和nu-TRLan两个软件包的基础上,开发了大样本核主成分分析模型求解算法的VC++程序。用高光谱遥感图像数据进行模型求解算法的应用试验研究,证明了大样本核主成分分析模型求解算法的实用性。 展开更多
关键词 大样本 核主成分分析 LANCZOS算法 Thick-重启动策略
在线阅读 下载PDF
基于FKICA-SIFT特征的合成孔径图像多尺度配准 被引量:12
20
作者 刘向增 田铮 +1 位作者 史振广 陈占寿 《光学精密工程》 EI CAS CSCD 北大核心 2011年第9期2186-2196,共11页
针对合成孔径(SAR)图像的配准,提出一种基于仿射不变快速核独立成分分析-尺度不变特征变换(FKICA-SIFT)的多尺度配准方法。首先,根据特征点的Hessian矩阵构建仿射不变SIFT描述子。接着,利用FKICA提取该描述子的独立成分得到新的描述子FK... 针对合成孔径(SAR)图像的配准,提出一种基于仿射不变快速核独立成分分析-尺度不变特征变换(FKICA-SIFT)的多尺度配准方法。首先,根据特征点的Hessian矩阵构建仿射不变SIFT描述子。接着,利用FKICA提取该描述子的独立成分得到新的描述子FKICA-SIFT。然后,利用该描述子对Steerable滤波后的各层带通合成子图像提取的特征点进行匹配。最后,采用由粗到细的匹配策略逐步优化变换参数,实现图像的多尺度精确配准。实验结果表明,对有较大仿射变化的SAR图像,当阈值小于0.7时,该方法的匹配正确率大于85%,阈值小于0.5时,匹配正确率可达90%以上,配准精度达到亚像素水平,优于SIFT,PCA-SIFT,ICA-SIFT及SURF等相关方法。使用该方法准确地检测出了地震前后唐家山堰塞湖水域的变化情况,基本满足了SAR图像变换检测前精确配准的要求。 展开更多
关键词 图像配准 合成孔径雷达图像 尺度不变特征变换 快速核独立成分分析
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部