Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl...Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.展开更多
Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample si...Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample size (SSS) property of face recognition. To solve the two problems,local Bagging (L-Bagging) is proposed to simultaneously make Bagging apply to both nearest neighbor classifiers and face recognition. The major difference between L-Bagging and Bagging is that L-Bagging performs the bootstrap sampling on each local region partitioned from the original face image rather than the whole face image. Since the dimensionality of local region is usually far less than the number of samples and the component classifiers are constructed just in different local regions,L-Bagging deals with SSS problem and generates more diverse component classifiers. Experimental results on four standard face image databases (AR,Yale,ORL and Yale B) indicate that the proposed L-Bagging method is effective and robust to illumination,occlusion and slight pose variation.展开更多
An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigen...An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigenspace is created with eigenvalues and eigenvectors. From this space, the eigenfaces are constructed, and the most relevant eigenfaees have been selected using GPCA. With these eigenfaees, the input images are classified based on Euclidian distance. The proposed method was tested on ORL (Olivetti Research Labs) face database. Experimental results on this database demonstrate that the effectiveness of the proposed method for face recognition has less misclassification in comparison with previous methods.展开更多
Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance manag...Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance management such as multiple cards for one person, and swiping one's cards by others in China at present. Therefore, the research introduces a uniqueness detection system and method for in-pit coal-mine personnel integrated into the in-pit coal mine personnel positioning system, establishing a system mode based on face recognition + recognition of personnel positioning card + release by automatic detection. Aiming at the facts that the in-pit personnel are wearing helmets and faces are prone to be stained during the face recognition, the study proposes the ideas that pre-process face images using the 2D-wavelet-transformation-based Mallat algorithm and extracts three face features: miner light, eyes and mouths, using the generalized symmetry transformation-based algorithm. This research carried out test with 40 clean face images with no helmets and 40 lightly-stained face images, and then compared with results with the one using the face feature extraction method based on grey-scale transformation and edge detection. The results show that the method described in the paper can detect accurately face features in the above-mentioned two cases, and the accuracy to detect face features is 97.5% in the case of wearing helmets and lightly-stained faces.展开更多
An algorithm for face description and recognition based on multi-resolution with multi-scale local binary pattern (multi-LBP) features is proposed. The facial image pyramid is constructed and each facial image is di...An algorithm for face description and recognition based on multi-resolution with multi-scale local binary pattern (multi-LBP) features is proposed. The facial image pyramid is constructed and each facial image is divided into various regions from which partial and holistic local binary patter (LBP) histograms are extracted. All LBP features of each image are concatenated to a single LBP eigenvector with different resolutions. The dimensionaUty of LBP features is then reduced by a local margin alignment (LMA) algorithm based on manifold, which can preserve the between-class variance. Support vector machine (SVM) is applied to classify facial images. Extensive experiments on ORL and CMU face databases clearly show the superiority of the proposed scheme over some existed algorithms, especially on the robustness of the method against different facial expressions and postures of the subjects.展开更多
A face recognition scheme is proposed, wherein a face image is preprocessed by pixel averaging and energy normalizing to reduce data dimension and brightness variation effect, followed by the Fourier transform to esti...A face recognition scheme is proposed, wherein a face image is preprocessed by pixel averaging and energy normalizing to reduce data dimension and brightness variation effect, followed by the Fourier transform to estimate the spectrum of the preprocessed image. The principal component analysis is conducted on the spectra of a face image to obtain eigen features. Combining eigen features with a Parzen classifier, experiments are taken on the ORL face database.展开更多
In this paper, we proposed a new approach for face recognition with robust to illumination variation. The improved performance to various lights in recognition is obtained by a novel combination of multicondition reli...In this paper, we proposed a new approach for face recognition with robust to illumination variation. The improved performance to various lights in recognition is obtained by a novel combination of multicondition relighting and optimal feature selection. Multi-condition relighting provides a "coarse" compensation for the variable illumination, and then the optimal feature selection further refines the compensation, and additionally offers the robustness to shadow and highlight, by deemphasizing the local mismatches caused by imprecise lighting compensation, shadow or highlight on recognition. For evaluation, two databases with various illumination mismatches have been used. The results have demonstrated the improved robustness of the new methods.展开更多
Canonical correlation analysis ( CCA ) based methods for low-resolution ( LR ) face recognition involve face images with different resolutions ( or multi-resolutions ), i.e.LR and high-resolution ( HR ) .For single-re...Canonical correlation analysis ( CCA ) based methods for low-resolution ( LR ) face recognition involve face images with different resolutions ( or multi-resolutions ), i.e.LR and high-resolution ( HR ) .For single-resolution face recognition , researchers have shown that utilizing spatial information is beneficial to improving the recognition accuracy , mainly because the pixels of each face are not independent but spatially correlated.However , for a multi-resolution scenario , there are no related works.Therefore , a method named spatial regularization of canonical correlation analysis ( SRCCA ) is developed for LR face recognition to improve the performance of CCA by the regularization utilizing spatial information of different resolution faces.Furthermore , the impact of LR and HR spatial regularization terms on LR face recognition is analyzed through experiments.展开更多
A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), e...A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), exploited illuminant directions to alleviate the effect of illumination variations on face recognition. The face images were first projected into low dimensional subspace, Then the ILPP translated the face images along specific direction to reduce lighting variations in the face. The ILPP reduced the distance between face images of the same class, while increase the dis tance between face images of different classes. This proposed method was derived from the locality preserving projections (LPP) methods, and was designed to handle face images with various illumi nations. It preserved the face image' s local structure in low dimensional subspace. The ILPP meth od was compared with LPP and discriminant locality preserving projections (DLPP), based on the YaleB face database. Experimental results showed the effectiveness of the proposed algorithm on the face recognition with various illuminations.展开更多
With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communicati...With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communication,image is widely used as a carrier of communication because of its rich content,intuitive and other advantages.Image recognition based on convolution neural network is the first application in the field of image recognition.A series of algorithm operations such as image eigenvalue extraction,recognition and convolution are used to identify and analyze different images.The rapid development of artificial intelligence makes machine learning more and more important in its research field.Use algorithms to learn each piece of data and predict the outcome.This has become an important key to open the door of artificial intelligence.In machine vision,image recognition is the foundation,but how to associate the low-level information in the image with the high-level image semantics becomes the key problem of image recognition.Predecessors have provided many model algorithms,which have laid a solid foundation for the development of artificial intelligence and image recognition.The multi-level information fusion model based on the VGG16 model is an improvement on the fully connected neural network.Different from full connection network,convolutional neural network does not use full connection method in each layer of neurons of neural network,but USES some nodes for connection.Although this method reduces the computation time,due to the fact that the convolutional neural network model will lose some useful feature information in the process of propagation and calculation,this paper improves the model to be a multi-level information fusion of the convolution calculation method,and further recovers the discarded feature information,so as to improve the recognition rate of the image.VGG divides the network into five groups(mimicking the five layers of AlexNet),yet it USES 3*3 filters and combines them as a convolution sequence.Network deeper DCNN,channel number is bigger.The recognition rate of the model was verified by 0RL Face Database,BioID Face Database and CASIA Face Image Database.展开更多
This paper addresses the issue of face and lip tracking via chromatic detector, CCL algorithm and canny edge detector. It aims to track face and lip region from static color images including frames read from videos, w...This paper addresses the issue of face and lip tracking via chromatic detector, CCL algorithm and canny edge detector. It aims to track face and lip region from static color images including frames read from videos, which is exPected to be an important part of the robust and reliable person identification in the field of computer forensics. We use the M2VTS face database and pictures took from my colleagues as the test resource. This project is based on the concept of image processing and computer version.展开更多
This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple tech...This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple technique, it is applied to eigenface classification. Experimental results on the ORL face database show that it improves performance by around 6 points, in classification rate, over the Euclidean distance classifier.展开更多
The automatic detection of faces is a very important problem. The effectiveness of biometric authentication based on face mainly depends on the method used to locate the face in the image. This paper presents a hybrid...The automatic detection of faces is a very important problem. The effectiveness of biometric authentication based on face mainly depends on the method used to locate the face in the image. This paper presents a hybrid system for faces detection in unconstrained cases in which the illumination, pose, occlusion, and size of the face are uncontrolled. To do this, the new method of detection proposed in this paper is based primarily on a technique of automatic learning by using the decision of three neural networks, a technique of energy compaction by using the discrete cosine transform, and a technique of segmentation by the color of human skin. A whole of pictures (faces and no faces) are transformed to vectors of data which will be used for learning the neural networks to separate between the two classes. Discrete cosine transform is used to reduce the dimension of the vectors, to eliminate the redundancies of information, and to store only the useful information in a minimum number of coefficients while the segmentation is used to reduce the space of research in the image. The experimental results have shown that this hybridization of methods will give a very significant improvement of the rate of the recognition, quality of detection, and the time of execution.展开更多
Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating informa...Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating information by preserving sparse reconstruction relationship of data sets. However, SPP suffers from the fact that every new feature learned from data sets is linear combinations of all the original features, which often makes it difficult to interpret the results. To address this issue, a novel DR method called dual-sparsity preserving projection (DSPP) is proposed to further impose sparsity constraints on the projection directions of SPP. Specifically, the proposed method casts the projection function learning of SPP into a regression-type optimization problem, and then the sparse projections can be efficiently computed by the related lasso algorithm. Experimental results from face databases demonstrate the effectiveness of the proposed algorithm.展开更多
Information fusion in biometric systems, either multimodal or intramodal fusion, usually provides an improvement in recognition performance. This paper presents an improved score-level fusion scheme called boosted sco...Information fusion in biometric systems, either multimodal or intramodal fusion, usually provides an improvement in recognition performance. This paper presents an improved score-level fusion scheme called boosted score fusion. The proposed framework is a two-stage design where an existing fusion algorithm is adopted at the first stage. At the second stage, the weights obtained by the AdaBoost algorithm are utilized to boost the performance of the previously fused results. The experimental results demonstrate that the performance of several score-level fusion methods can be improved by using the presented method.展开更多
文摘Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.
文摘Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample size (SSS) property of face recognition. To solve the two problems,local Bagging (L-Bagging) is proposed to simultaneously make Bagging apply to both nearest neighbor classifiers and face recognition. The major difference between L-Bagging and Bagging is that L-Bagging performs the bootstrap sampling on each local region partitioned from the original face image rather than the whole face image. Since the dimensionality of local region is usually far less than the number of samples and the component classifiers are constructed just in different local regions,L-Bagging deals with SSS problem and generates more diverse component classifiers. Experimental results on four standard face image databases (AR,Yale,ORL and Yale B) indicate that the proposed L-Bagging method is effective and robust to illumination,occlusion and slight pose variation.
文摘An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigenspace is created with eigenvalues and eigenvectors. From this space, the eigenfaces are constructed, and the most relevant eigenfaees have been selected using GPCA. With these eigenfaees, the input images are classified based on Euclidian distance. The proposed method was tested on ORL (Olivetti Research Labs) face database. Experimental results on this database demonstrate that the effectiveness of the proposed method for face recognition has less misclassification in comparison with previous methods.
基金financial supports from the National Natural Science Foundation of China (No. 51134024)the National High Technology Research and Development Program of China (No. 2012AA062203)are gratefully acknowledged
文摘Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance management such as multiple cards for one person, and swiping one's cards by others in China at present. Therefore, the research introduces a uniqueness detection system and method for in-pit coal-mine personnel integrated into the in-pit coal mine personnel positioning system, establishing a system mode based on face recognition + recognition of personnel positioning card + release by automatic detection. Aiming at the facts that the in-pit personnel are wearing helmets and faces are prone to be stained during the face recognition, the study proposes the ideas that pre-process face images using the 2D-wavelet-transformation-based Mallat algorithm and extracts three face features: miner light, eyes and mouths, using the generalized symmetry transformation-based algorithm. This research carried out test with 40 clean face images with no helmets and 40 lightly-stained face images, and then compared with results with the one using the face feature extraction method based on grey-scale transformation and edge detection. The results show that the method described in the paper can detect accurately face features in the above-mentioned two cases, and the accuracy to detect face features is 97.5% in the case of wearing helmets and lightly-stained faces.
基金supported by the National Natural Science Foundation of China under Grant No. 60973070
文摘An algorithm for face description and recognition based on multi-resolution with multi-scale local binary pattern (multi-LBP) features is proposed. The facial image pyramid is constructed and each facial image is divided into various regions from which partial and holistic local binary patter (LBP) histograms are extracted. All LBP features of each image are concatenated to a single LBP eigenvector with different resolutions. The dimensionaUty of LBP features is then reduced by a local margin alignment (LMA) algorithm based on manifold, which can preserve the between-class variance. Support vector machine (SVM) is applied to classify facial images. Extensive experiments on ORL and CMU face databases clearly show the superiority of the proposed scheme over some existed algorithms, especially on the robustness of the method against different facial expressions and postures of the subjects.
文摘A face recognition scheme is proposed, wherein a face image is preprocessed by pixel averaging and energy normalizing to reduce data dimension and brightness variation effect, followed by the Fourier transform to estimate the spectrum of the preprocessed image. The principal component analysis is conducted on the spectra of a face image to obtain eigen features. Combining eigen features with a Parzen classifier, experiments are taken on the ORL face database.
文摘In this paper, we proposed a new approach for face recognition with robust to illumination variation. The improved performance to various lights in recognition is obtained by a novel combination of multicondition relighting and optimal feature selection. Multi-condition relighting provides a "coarse" compensation for the variable illumination, and then the optimal feature selection further refines the compensation, and additionally offers the robustness to shadow and highlight, by deemphasizing the local mismatches caused by imprecise lighting compensation, shadow or highlight on recognition. For evaluation, two databases with various illumination mismatches have been used. The results have demonstrated the improved robustness of the new methods.
基金Supported by the National Natural Science Foundation of China(6117015161070133+2 种基金60903130)the Natural Science Research Project of Higher Education of Jiangsu Province(12KJB520018)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NP2011030)
文摘Canonical correlation analysis ( CCA ) based methods for low-resolution ( LR ) face recognition involve face images with different resolutions ( or multi-resolutions ), i.e.LR and high-resolution ( HR ) .For single-resolution face recognition , researchers have shown that utilizing spatial information is beneficial to improving the recognition accuracy , mainly because the pixels of each face are not independent but spatially correlated.However , for a multi-resolution scenario , there are no related works.Therefore , a method named spatial regularization of canonical correlation analysis ( SRCCA ) is developed for LR face recognition to improve the performance of CCA by the regularization utilizing spatial information of different resolution faces.Furthermore , the impact of LR and HR spatial regularization terms on LR face recognition is analyzed through experiments.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), exploited illuminant directions to alleviate the effect of illumination variations on face recognition. The face images were first projected into low dimensional subspace, Then the ILPP translated the face images along specific direction to reduce lighting variations in the face. The ILPP reduced the distance between face images of the same class, while increase the dis tance between face images of different classes. This proposed method was derived from the locality preserving projections (LPP) methods, and was designed to handle face images with various illumi nations. It preserved the face image' s local structure in low dimensional subspace. The ILPP meth od was compared with LPP and discriminant locality preserving projections (DLPP), based on the YaleB face database. Experimental results showed the effectiveness of the proposed algorithm on the face recognition with various illuminations.
文摘With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communication,image is widely used as a carrier of communication because of its rich content,intuitive and other advantages.Image recognition based on convolution neural network is the first application in the field of image recognition.A series of algorithm operations such as image eigenvalue extraction,recognition and convolution are used to identify and analyze different images.The rapid development of artificial intelligence makes machine learning more and more important in its research field.Use algorithms to learn each piece of data and predict the outcome.This has become an important key to open the door of artificial intelligence.In machine vision,image recognition is the foundation,but how to associate the low-level information in the image with the high-level image semantics becomes the key problem of image recognition.Predecessors have provided many model algorithms,which have laid a solid foundation for the development of artificial intelligence and image recognition.The multi-level information fusion model based on the VGG16 model is an improvement on the fully connected neural network.Different from full connection network,convolutional neural network does not use full connection method in each layer of neurons of neural network,but USES some nodes for connection.Although this method reduces the computation time,due to the fact that the convolutional neural network model will lose some useful feature information in the process of propagation and calculation,this paper improves the model to be a multi-level information fusion of the convolution calculation method,and further recovers the discarded feature information,so as to improve the recognition rate of the image.VGG divides the network into five groups(mimicking the five layers of AlexNet),yet it USES 3*3 filters and combines them as a convolution sequence.Network deeper DCNN,channel number is bigger.The recognition rate of the model was verified by 0RL Face Database,BioID Face Database and CASIA Face Image Database.
文摘This paper addresses the issue of face and lip tracking via chromatic detector, CCL algorithm and canny edge detector. It aims to track face and lip region from static color images including frames read from videos, which is exPected to be an important part of the robust and reliable person identification in the field of computer forensics. We use the M2VTS face database and pictures took from my colleagues as the test resource. This project is based on the concept of image processing and computer version.
文摘This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple technique, it is applied to eigenface classification. Experimental results on the ORL face database show that it improves performance by around 6 points, in classification rate, over the Euclidean distance classifier.
基金supported by the Laboratory of Inverses Problems, Modeling, Information and Systems (PI:MIS), Department of Electronic and Telecommunication, University of 08 Mai 1945, Guelma, Algériathe Laboratory of Computer Research (LRI), Department of Computer Sciences, University of Badji Mokhtar, Annaba, Algéria
文摘The automatic detection of faces is a very important problem. The effectiveness of biometric authentication based on face mainly depends on the method used to locate the face in the image. This paper presents a hybrid system for faces detection in unconstrained cases in which the illumination, pose, occlusion, and size of the face are uncontrolled. To do this, the new method of detection proposed in this paper is based primarily on a technique of automatic learning by using the decision of three neural networks, a technique of energy compaction by using the discrete cosine transform, and a technique of segmentation by the color of human skin. A whole of pictures (faces and no faces) are transformed to vectors of data which will be used for learning the neural networks to separate between the two classes. Discrete cosine transform is used to reduce the dimension of the vectors, to eliminate the redundancies of information, and to store only the useful information in a minimum number of coefficients while the segmentation is used to reduce the space of research in the image. The experimental results have shown that this hybridization of methods will give a very significant improvement of the rate of the recognition, quality of detection, and the time of execution.
基金Supported by the National Natural Science Foundation of China(11076015)the Shandong Provincial Natural Science Foundation(ZR2010FL011)the Scientific Foundation of Liaocheng University(X10010)~~
文摘Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating information by preserving sparse reconstruction relationship of data sets. However, SPP suffers from the fact that every new feature learned from data sets is linear combinations of all the original features, which often makes it difficult to interpret the results. To address this issue, a novel DR method called dual-sparsity preserving projection (DSPP) is proposed to further impose sparsity constraints on the projection directions of SPP. Specifically, the proposed method casts the projection function learning of SPP into a regression-type optimization problem, and then the sparse projections can be efficiently computed by the related lasso algorithm. Experimental results from face databases demonstrate the effectiveness of the proposed algorithm.
基金supported by the“MOST”under Grants No.104-2218-E-468-001 and No.104-2221-E-194-050
文摘Information fusion in biometric systems, either multimodal or intramodal fusion, usually provides an improvement in recognition performance. This paper presents an improved score-level fusion scheme called boosted score fusion. The proposed framework is a two-stage design where an existing fusion algorithm is adopted at the first stage. At the second stage, the weights obtained by the AdaBoost algorithm are utilized to boost the performance of the previously fused results. The experimental results demonstrate that the performance of several score-level fusion methods can be improved by using the presented method.