This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the fe...This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.展开更多
This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,...This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC.展开更多
The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode pat...The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode path-following control system is proposed, which comprises a path-variable updated law,a modified integral line-of-sight(ILOS) guidance law based on a time-varying lookahead distance and adaptive feedback linearizing controllers combined with sliding-mode technique. A more accurate USV model without the assumption of having diagonal inertia and damping matrices is first presented, aiming at improving the performance of the path-following control. Next, the coordinate transformation is adopted to decouple the sway dynamic from the rudder angle, and the path-following errors dynamics without non-singular problem are presented in the moving Frenet-Serret frame. Then, based on the cascaded theorem and the adaptive sliding-mode method, the adaptive control law of position errors and course error are designed, among which the lookahead distance and integral gain are all computed as different functions of cross-track error to estimate and compensate the sideslip angle caused by external disturbances adaptively. Finally, according to the Lyapunov and cascaded theorem, the control system proposed is proved to be uniform globally asymptotic stability(UGAS) and uniform semiglobal exponential stability(USGES) when the control objectives are all achieved. Simulation results illustrate the precision and high-quality performance of this new controller.展开更多
To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal po...To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal policy opti-mization(DPPO)algorithm,which is a modified actor-critic-based type of reinforcement learning algorithm,is adapted to improve the controller performance in repeated trials.The LSTM network structure is introduced to solve the strong temporal cor-relation USV control problem.In addition,a specially designed path dataset,including straight and curved paths,is established to simulate various sailing scenarios so that the reinforcement learning controller can obtain as much handling experience as possible.Extensive numerical simulation results demonstrate that the proposed method has better control performance under missions involving complex maneuvers than trained with limited scenarios and can potentially be applied in practice.展开更多
The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa...The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
A nonlinear robust control strategy is proposed to force an underactuated surface ship to follow a predefined path with uncertain environmental disturbance and parameters.In the controller design,a high-gain observer ...A nonlinear robust control strategy is proposed to force an underactuated surface ship to follow a predefined path with uncertain environmental disturbance and parameters.In the controller design,a high-gain observer is used to estimate velocities,thus only position and yaw angle measurements are required.The control problem of underactuated system is transformed into a control of fully actuated system through adopting an improved line-of-sight(LOS) guidance law.A sliding-mode controller is designed to eliminate the yaw angle error,and provide the control system robustness.The control law is proved semi-globally exponentially stable(SGES) by applying Lyapunov stability theory,and numerical simulation using real data of a monohull ship illustrates the effectiveness and robustness of the proposed methodology.展开更多
A feedback-dominance based adaptive back-stepping(FDBAB) controller is designed to drive a container ship to follow a predefined path. In reality, current, wave and wind act on the ship and produce unwanted disturbanc...A feedback-dominance based adaptive back-stepping(FDBAB) controller is designed to drive a container ship to follow a predefined path. In reality, current, wave and wind act on the ship and produce unwanted disturbances to the ship control system.The FDBAB controller has to compensate for such disturbances and steer the ship to track the predefined(or desired) path. The difference between the actual and the desired path along which the ship is to sail is defined as the tracking error. The FDBAB controller is built on the tracking error model which is developed based on Serret-Frenet frame transformation(SFFT). In additional to being affected by external disturbances, the ship has more outputs than inputs(under-actuated), and is inherently nonlinear.The back-stepping controller in FDBAB is used to compensate the nonlinearity. The adaptive algorithms in FDBAB is employed to approximate disturbances. Lyapunov's direct method is used to prove the stability of the control system. The FDBAB controlled system is implemented in Matlab/Simulink. The simulation results verify the effectiveness of the controller in terms of successful path tracking and disturbance rejection.展开更多
Based on classical terrain following (TF) algorithm (adaptive angle method), a new method for TF controller is proposed by using angle of attack. A method of obtaining terrain outline data from Digital Elevation Map (...Based on classical terrain following (TF) algorithm (adaptive angle method), a new method for TF controller is proposed by using angle of attack. A method of obtaining terrain outline data from Digital Elevation Map (DEM) for TF control is discussed in order to save store space. The block control model, which is suitable for backstepping design, is given for nonlinear model of aircraft. Making full use of the characteristics of the system and combining block control principle, backstepping technique, a robust controller design method is proposed. Uncertainties in every sub-block are allowed, and can be canceled by using the idea of nonlinear damping. It is proved that the state tracking errors converge to the neighborhood of the origin exponentially. Finally, nonlinear six-degree-of-freedom simulation results for the aircraft model are presented to demonstrate the effectiveness of the proposed control law.展开更多
The micro modeling for electric vehicle and its solution were investigated. A new car-following model for electric vehicle was proposed based on the existing car-following models. The impacts of the electric vehicle...The micro modeling for electric vehicle and its solution were investigated. A new car-following model for electric vehicle was proposed based on the existing car-following models. The impacts of the electric vehicle's charging electricity were studied from the numerical perspective. The numerical results show that the electric vehicle's charging electricity will destroy the stability of uniform flow and produce some prominent queues and these traffic phenomena are directly related to the initial headway, the distance between two adjacent charging stations and the number of charging stations. The above results can help traffic engineer to choose the position of charging station and the electric vehicle's driver to adjust his/her driving behavior in the traffic system with charging station.展开更多
An optimal preview method is applied to the design of terrain following controller for cruise missile. In this method, tracking errors and control increments are both considered in the quadratic cost function. Integra...An optimal preview method is applied to the design of terrain following controller for cruise missile. In this method, tracking errors and control increments are both considered in the quadratic cost function. Integrating the general optimal servo system with a preview feedforward compensation that feeds forward future command and future disturbance produces an optimal preview servo system. In the terrain following system, the flight altitude of the cruise missile is a command signal, and its future information can be known apriori. Hence, we have designed a terrain following controller with a basic state feedback and a feedforward compensation for future altitude information. Simulation results show that the performance of the terrain following system with such an optimal preview controller has been improved dramatically.展开更多
The goal of this paper is to enhance a practical nominal characteristic trajectory following(NCTF) controller that is specifically designed for two-mass point-to-point positioning systems. A nominal characteristics tr...The goal of this paper is to enhance a practical nominal characteristic trajectory following(NCTF) controller that is specifically designed for two-mass point-to-point positioning systems. A nominal characteristics trajectory contained in the NCTF controller acts as movement/motion reference and a compensator is utilized to force the object to detect and follow the reference/desired trajectory. The object must follow and track closely and should be as fast as possible. The NCTF controller is designed with two different intelligent based compensator approaches which are fuzzy logic and extended minimal resource allocation network. The proposed controller which is NCTF are compared with the conventional proportional integral compensator. Then the results of simulation are discussed for the positioning performances. The inertia variations due to the effect of the design parameters are also assessed to see the robustness of controllers. The results show that the NCTF control method designed from an intelligent based compensator has a better positioning performance in terms of percentage of overshoot, settling time, and steady state error than the classical based compensator.展开更多
Objectives: To investigate foot transverse arch biomechanical stability contributed by the second metatarsal and the three ligaments connecting medial cuneiform to the second metatarsal base.Methods: Six fresh-frozen ...Objectives: To investigate foot transverse arch biomechanical stability contributed by the second metatarsal and the three ligaments connecting medial cuneiform to the second metatarsal base.Methods: Six fresh-frozen cadaveric lower extremities were dissected to expose the展开更多
This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi...This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.展开更多
To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are con...To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming.展开更多
描述了多处理机环境中 FIRST 和 FOLLOW 集合求解的一种并行处理方法,并讨论了 FIRST 和 FOLLOW 集合的并行算法设计思想和它的实现策略,在构造文法 G 的 LL(1)分析表以及判定文法 G 是否 LL(1)文法时,求解 FIRST 和 FOLLOW 集合是很重...描述了多处理机环境中 FIRST 和 FOLLOW 集合求解的一种并行处理方法,并讨论了 FIRST 和 FOLLOW 集合的并行算法设计思想和它的实现策略,在构造文法 G 的 LL(1)分析表以及判定文法 G 是否 LL(1)文法时,求解 FIRST 和 FOLLOW 集合是很重要的内容,由于文法中终结符和非终结符个数很多,考虑 FIRST 和 FOLLOW 集合的并行处理方法,对并行编译处理和提高效率有其理论和现实意义。展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173312 and 61803348in part by the National Major Scientific Instruments Development Project under Grant No.61927807+3 种基金in part by the Program for the Innovative Talents of Higher Education Institutions of ShanxiShanxi Province Science Foundation for Excellent Youthsin part by the Shanxi"1331 Project"Key Subjects Construction(1331KSC)in part by Graduate Innovation Project of Shanxi Province under Grant No.2021Y617。
文摘This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.
基金“National Science and Technology Council”(NSTC 111-2221-E-027-088)。
文摘This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC.
基金supported by the National Social Science Foundation of China(15GJ003-278)the National Natural Science Foundation of China(71501182)
文摘The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode path-following control system is proposed, which comprises a path-variable updated law,a modified integral line-of-sight(ILOS) guidance law based on a time-varying lookahead distance and adaptive feedback linearizing controllers combined with sliding-mode technique. A more accurate USV model without the assumption of having diagonal inertia and damping matrices is first presented, aiming at improving the performance of the path-following control. Next, the coordinate transformation is adopted to decouple the sway dynamic from the rudder angle, and the path-following errors dynamics without non-singular problem are presented in the moving Frenet-Serret frame. Then, based on the cascaded theorem and the adaptive sliding-mode method, the adaptive control law of position errors and course error are designed, among which the lookahead distance and integral gain are all computed as different functions of cross-track error to estimate and compensate the sideslip angle caused by external disturbances adaptively. Finally, according to the Lyapunov and cascaded theorem, the control system proposed is proved to be uniform globally asymptotic stability(UGAS) and uniform semiglobal exponential stability(USGES) when the control objectives are all achieved. Simulation results illustrate the precision and high-quality performance of this new controller.
基金supported by the National Natural Science Foundation(61601491)the Natural Science Foundation of Hubei Province(2018CFC865)the China Postdoctoral Science Foundation Funded Project(2016T45686).
文摘To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal policy opti-mization(DPPO)algorithm,which is a modified actor-critic-based type of reinforcement learning algorithm,is adapted to improve the controller performance in repeated trials.The LSTM network structure is introduced to solve the strong temporal cor-relation USV control problem.In addition,a specially designed path dataset,including straight and curved paths,is established to simulate various sailing scenarios so that the reinforcement learning controller can obtain as much handling experience as possible.Extensive numerical simulation results demonstrate that the proposed method has better control performance under missions involving complex maneuvers than trained with limited scenarios and can potentially be applied in practice.
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.
基金Projects(61004008,51509055)supported by the National Natural Science Foundation of ChinaProject(61422230302162223013)supported by the Laboratory of Science and Technology on Water Jet Propulsion,China
文摘A nonlinear robust control strategy is proposed to force an underactuated surface ship to follow a predefined path with uncertain environmental disturbance and parameters.In the controller design,a high-gain observer is used to estimate velocities,thus only position and yaw angle measurements are required.The control problem of underactuated system is transformed into a control of fully actuated system through adopting an improved line-of-sight(LOS) guidance law.A sliding-mode controller is designed to eliminate the yaw angle error,and provide the control system robustness.The control law is proved semi-globally exponentially stable(SGES) by applying Lyapunov stability theory,and numerical simulation using real data of a monohull ship illustrates the effectiveness and robustness of the proposed methodology.
文摘A feedback-dominance based adaptive back-stepping(FDBAB) controller is designed to drive a container ship to follow a predefined path. In reality, current, wave and wind act on the ship and produce unwanted disturbances to the ship control system.The FDBAB controller has to compensate for such disturbances and steer the ship to track the predefined(or desired) path. The difference between the actual and the desired path along which the ship is to sail is defined as the tracking error. The FDBAB controller is built on the tracking error model which is developed based on Serret-Frenet frame transformation(SFFT). In additional to being affected by external disturbances, the ship has more outputs than inputs(under-actuated), and is inherently nonlinear.The back-stepping controller in FDBAB is used to compensate the nonlinearity. The adaptive algorithms in FDBAB is employed to approximate disturbances. Lyapunov's direct method is used to prove the stability of the control system. The FDBAB controlled system is implemented in Matlab/Simulink. The simulation results verify the effectiveness of the controller in terms of successful path tracking and disturbance rejection.
文摘Based on classical terrain following (TF) algorithm (adaptive angle method), a new method for TF controller is proposed by using angle of attack. A method of obtaining terrain outline data from Digital Elevation Map (DEM) for TF control is discussed in order to save store space. The block control model, which is suitable for backstepping design, is given for nonlinear model of aircraft. Making full use of the characteristics of the system and combining block control principle, backstepping technique, a robust controller design method is proposed. Uncertainties in every sub-block are allowed, and can be canceled by using the idea of nonlinear damping. It is proved that the state tracking errors converge to the neighborhood of the origin exponentially. Finally, nonlinear six-degree-of-freedom simulation results for the aircraft model are presented to demonstrate the effectiveness of the proposed control law.
基金Project(71271016)supported the National Natural Science Foundation of China
文摘The micro modeling for electric vehicle and its solution were investigated. A new car-following model for electric vehicle was proposed based on the existing car-following models. The impacts of the electric vehicle's charging electricity were studied from the numerical perspective. The numerical results show that the electric vehicle's charging electricity will destroy the stability of uniform flow and produce some prominent queues and these traffic phenomena are directly related to the initial headway, the distance between two adjacent charging stations and the number of charging stations. The above results can help traffic engineer to choose the position of charging station and the electric vehicle's driver to adjust his/her driving behavior in the traffic system with charging station.
文摘An optimal preview method is applied to the design of terrain following controller for cruise missile. In this method, tracking errors and control increments are both considered in the quadratic cost function. Integrating the general optimal servo system with a preview feedforward compensation that feeds forward future command and future disturbance produces an optimal preview servo system. In the terrain following system, the flight altitude of the cruise missile is a command signal, and its future information can be known apriori. Hence, we have designed a terrain following controller with a basic state feedback and a feedforward compensation for future altitude information. Simulation results show that the performance of the terrain following system with such an optimal preview controller has been improved dramatically.
文摘The goal of this paper is to enhance a practical nominal characteristic trajectory following(NCTF) controller that is specifically designed for two-mass point-to-point positioning systems. A nominal characteristics trajectory contained in the NCTF controller acts as movement/motion reference and a compensator is utilized to force the object to detect and follow the reference/desired trajectory. The object must follow and track closely and should be as fast as possible. The NCTF controller is designed with two different intelligent based compensator approaches which are fuzzy logic and extended minimal resource allocation network. The proposed controller which is NCTF are compared with the conventional proportional integral compensator. Then the results of simulation are discussed for the positioning performances. The inertia variations due to the effect of the design parameters are also assessed to see the robustness of controllers. The results show that the NCTF control method designed from an intelligent based compensator has a better positioning performance in terms of percentage of overshoot, settling time, and steady state error than the classical based compensator.
基金National Natural Science Foundation #30801163,year2008,and#30640058
文摘Objectives: To investigate foot transverse arch biomechanical stability contributed by the second metatarsal and the three ligaments connecting medial cuneiform to the second metatarsal base.Methods: Six fresh-frozen cadaveric lower extremities were dissected to expose the
基金Project(WPUKFJJ2019-19)supported by the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining,ChinaProject(51974317)supported by the National Natural Science Foundation of China。
文摘This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.
文摘To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming.
基金financially supported by Key scientific research project of the Chongqing Institute of Engineering(KJA201402)the Natural Science Foundation of China(61462008)
文摘描述了多处理机环境中 FIRST 和 FOLLOW 集合求解的一种并行处理方法,并讨论了 FIRST 和 FOLLOW 集合的并行算法设计思想和它的实现策略,在构造文法 G 的 LL(1)分析表以及判定文法 G 是否 LL(1)文法时,求解 FIRST 和 FOLLOW 集合是很重要的内容,由于文法中终结符和非终结符个数很多,考虑 FIRST 和 FOLLOW 集合的并行处理方法,对并行编译处理和提高效率有其理论和现实意义。