A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorptio...A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications.展开更多
The effects of a fine water mist environment in a semi-confined blast chamber on the chemical and thermodynamic processes following detonation of a 20 g PE4 explosive charge have been investigated.The effects were qua...The effects of a fine water mist environment in a semi-confined blast chamber on the chemical and thermodynamic processes following detonation of a 20 g PE4 explosive charge have been investigated.The effects were quantified by the analysis of pressure profiles recorded where several parameters including arrival time of the shock at the sensors, peak overpressures, specific impulse of the positive phase, period of the negative phase and the specific impulse of the multiple reflections were quantified.The effect of the fine water mist on the arrival time, peak pressures and the specific impulse of the positive phase agrees with previous findings in literature. In this paper, the focus is on the implications of the fine water mist on the negative phase and the impulse of multiple pressure reflections. The period of the negative phase was found to have increased by 40% and with higher negative peak pressure in the mist condition compared to the atmospheric condition. The activities of the multiple pressure reflections were found to have decreased considerably, both in number and in amplitude leading to lower impulses(by about 60%) for the water mist conditions.展开更多
Magnetic seeding agglomeration(MSA),i.e.,adding magnetic seeds and a low intensity pre-magnetization for fine agglomeration,was applied to the flotation of coal,pyrite and hematite ore slimes.Size analysis and flotati...Magnetic seeding agglomeration(MSA),i.e.,adding magnetic seeds and a low intensity pre-magnetization for fine agglomeration,was applied to the flotation of coal,pyrite and hematite ore slimes.Size analysis and flotation tests highlight that the MSA improved flotation recovery and kinetics of pyrite ore while causing some loss in selectivity,and in the presences of the polyacrylamide for coal and starch for hematite the agglomeration flotation was further strengthened due to the synergetic effect between the flocculants and magnetic seeds.Magnetism analyses and calculation confirmed the adsorption of magnetic seeds onto minerals,resulting in a decreased threshold magnetic field intensity for the MSA to happen.Then atomic force microscope(AFM)study found that there exists a long range force between magnetic seeds and minerals,which facilitates the adsorption of magnetic seeds on minerals.FTIR shows both the polyacrylamide and starch adsorbed onto minerals and magnetic seeds,thus acting as the bridging media between minerals and magnetic seeds,intensifying the agglomeration in flotation.Surface characterization of the MSA was understood by SEM imaging,and models of the MSA were proposed.展开更多
Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation m...Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation mechanism of the fine cassiterite was investigated by adsorbance determination,electrophoretic mobility measurements and Fourier transform infra-red(FT-IR) spectrum checking.Results of the flotation experiments show that with SHA as a collector,the collecting performance is remarkably impacted by the pulp pH value as the floatability of cassiterite varies sharply when the pH changes,and flotation with SHA gives distinct maximum at about pH 6.5.Additionally,the floatability of cassiterite is determined by using SHA and TBP as collectors.The range of pulp pH for good floatability is broadened in the presence of TBP as auxiliary collector,and the utilization of TBP improves the recovery of cassiterite modestly.Moreover,the optimum pH value for cassiterite flotation is associated with adsorbance.The results of FT-IR spectrum and the electrophoretic mobility measurements indicate that the adsorption interaction between the collectors and the cassiterite is dominantly a kind of chemical bonding in the form of one or two cycle chelate rings due to the coordination of carbonyl group,hydroxamate and P=O group to the metal tin atoms,where the oxygen atoms contained in carbonyl group,hydroxamate and P=O group of the polar groups have the stereo conditions to form five-membered rings.In addition,the adsorption interactions of SHA and TBP on the surfaces of cassiterite are also dominated by means of hydrogen bonds.展开更多
Chromium ore fines containing coal (COFCC) can be rapidly heated by microwave to conduct the voluminal reduction, which lays a foundation of getting sponge ferrochromium powders with a lower content of C. Under the co...Chromium ore fines containing coal (COFCC) can be rapidly heated by microwave to conduct the voluminal reduction, which lays a foundation of getting sponge ferrochromium powders with a lower content of C. Under the conditions of COFCC with n(O)-n(C) (molar ratio) as 1.00-0.84 and n(SiO2)-n(CaO) as 1.00-0.39, the samples were heated by 10 kW microwave power to reach the given temperatures and held for different times respectively. The results show that the low-C-Cr ferrochromium metal phase in the reduced materials forms before the high-C-Cr ferrochromium metal phase does. With increasing temperature the C content of ferrochromium metals is in a positive correlation with the content of Cr. The C content of ferrochromium metal in reduced materials is 0-10.07% with an average value of 4.68%. With the increase of holding time the Cr content in ferrochromium metals is in a negative correlation with the content of C, while the content of Fe changes in the contrary way. In the microwave field the kinetic conditions of carburization are closely related with the temperature of microwave heating, holding time and carbon fitting ratio.展开更多
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
An effective flotation approach is proposed for improving the recovery of molybdenite fines from a finely-disseminated molybdenum ore. To maximize the flotation recovery of molybdenum, process mineralogy of raw ore, c...An effective flotation approach is proposed for improving the recovery of molybdenite fines from a finely-disseminated molybdenum ore. To maximize the flotation recovery of molybdenum, process mineralogy of raw ore, contrast tests, optimization of operation conditions and particle size analysis were systematically investigated. Process mineralogy suggests that in the raw ore, 61.63% of molybdenite particles distribute in the 〈20 pm size fraction, and intergrow with muscovite and pyrite as the contained and disseminated type. Contrast tests indicate that conventional flotation responds to poor collection efficiency for particles less than 25 pm. Oil agglomerate flotation (OAF) process demonstrates an obvious superiority in improving the flotation recovery of molybdenite fines. Furthermore, the flotation results of OAF process reveal that the dosage of transformer oil plays a critical role on the average size of collected mineral particles (d(0), agglomerates (d^0) and the molybdenum recovery. In addition, industrial tests illustrate that compared with the Mo-S bulk flotation approach, OAF process not only increases Mo recovery and grade of molybdenum concentrate by 22.75% and 17.47% respectively, but also achieves a sulfur concentrate with a superior grade of 38.92%.展开更多
The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the t...The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the tracking loop.Since the frequency step is usually 500 Hz or larger,the Doppler shift estimation accuracy cannot guarantee that satellite signals are brought into a stable tracking state.The straightforward solutions consist in increasing the sampling time and using zero-padding to improve the frequency resolution of the FFT.However,these solutions intensify the complexity and amount of computation.The contradiction between the acquisition accuracy and the computational load leads us to research for a more simple and effective algorithm,which achieves fine acquisition by a look-up table.After coarse acquisition using the parallel frequency acquisition(PFA)algorithm,the proposed algorithm optimizes the Doppler shift estimation through the look-up table method based on the FFT results to improve the acquisition accuracy of the Doppler shift with a minimal additional computing load.When the Doppler shift is within the queryable range of the table,the proposed algorithm can improve the Doppler shift estimation accuracy to 50 Hz for the BeiDou B1I signal.展开更多
The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die.In this work,rotational fine blanking ...The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die.In this work,rotational fine blanking which combined the linear and rotational motion of punch and counterpunch was applied for the forming of helical gears.A three-dimensional(3D) rigid-plastic finite element model was developed on the DEFORM-3D platform.By finite element simulation and analysis,the influences of key parameters on the punch load and cut surface were investigated.It is shown that: 1) with increasing the counterforce or helical angle,the punch load and the depth of die roll increase; 2) with increasing blank holder force,the punch load increases while the depth of die roll decreases; 3) V-ring indenter facilitates an improvement in the quality.The results of this research reveal the deformation mechanism of rotational fine blanking of helical gears,and provide valuable guidelines for further experimental studies.展开更多
A series of dynamic behavior tests on Nanjing flake-shaped fine sand were performed by using the WFI cyclic triaxial apparatus made in England. The dynamic behaviors of Nanjing flake-shaped fine sand under different s...A series of dynamic behavior tests on Nanjing flake-shaped fine sand were performed by using the WFI cyclic triaxial apparatus made in England. The dynamic behaviors of Nanjing flake-shaped fine sand under different static deviator stress levels and cyclic stress ratios were studied. Through comparing the effective stress path under cyclic loading with static loading, the processes of liquefaction of saturated Nanjing flake-shaped fine sand with development of dynamic pore-water pressure, including the initial compact state, compression state and dilative state, were investigated. The variation of the shear stiffness with the number of cycles and cyclic strain was investigated by analyzing the secant shear modulus in each unload-reload loop of dynamic stress-strain relationship. And by means of the exponential function, the empirical equations of the relationship between secant shear modulus Gsec, shear modulus ratio Gsec/Gmax and cyclic strain ε were established based on series of test results. The results show that according to different combinations of static deviator stress and cyclic stress, two kinds of failure patterns with deviator stress reversal or no deviator stress reversal are observed in the samples tested in this series, including cyclic mobility and the failure of accumulation residual strain. In addition, the degradation of dynamic shear modulus is due to the development of vibration pore-water pressure and it is observed that the shear modulus reduces with the progressive number of cycles.展开更多
基金supported by the National Natural Science Foundation of China(22168032)the National Key Research and Development Program of China(2023YFC3904302,2023YFB4103500)the Key Projects of Ning Dong Energy and Chemical Industry Base(2023NDKJXMLX022).
文摘A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications.
文摘The effects of a fine water mist environment in a semi-confined blast chamber on the chemical and thermodynamic processes following detonation of a 20 g PE4 explosive charge have been investigated.The effects were quantified by the analysis of pressure profiles recorded where several parameters including arrival time of the shock at the sensors, peak overpressures, specific impulse of the positive phase, period of the negative phase and the specific impulse of the multiple reflections were quantified.The effect of the fine water mist on the arrival time, peak pressures and the specific impulse of the positive phase agrees with previous findings in literature. In this paper, the focus is on the implications of the fine water mist on the negative phase and the impulse of multiple pressure reflections. The period of the negative phase was found to have increased by 40% and with higher negative peak pressure in the mist condition compared to the atmospheric condition. The activities of the multiple pressure reflections were found to have decreased considerably, both in number and in amplitude leading to lower impulses(by about 60%) for the water mist conditions.
基金Project(51274256)supported by the National Natural Science Foundation of China
文摘Magnetic seeding agglomeration(MSA),i.e.,adding magnetic seeds and a low intensity pre-magnetization for fine agglomeration,was applied to the flotation of coal,pyrite and hematite ore slimes.Size analysis and flotation tests highlight that the MSA improved flotation recovery and kinetics of pyrite ore while causing some loss in selectivity,and in the presences of the polyacrylamide for coal and starch for hematite the agglomeration flotation was further strengthened due to the synergetic effect between the flocculants and magnetic seeds.Magnetism analyses and calculation confirmed the adsorption of magnetic seeds onto minerals,resulting in a decreased threshold magnetic field intensity for the MSA to happen.Then atomic force microscope(AFM)study found that there exists a long range force between magnetic seeds and minerals,which facilitates the adsorption of magnetic seeds on minerals.FTIR shows both the polyacrylamide and starch adsorbed onto minerals and magnetic seeds,thus acting as the bridging media between minerals and magnetic seeds,intensifying the agglomeration in flotation.Surface characterization of the MSA was understood by SEM imaging,and models of the MSA were proposed.
基金Project(50774094) supported by the National Natural Science Foundation of ChinaProject(2010CB630905) supported by the National Basic Research Program of China
文摘Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation mechanism of the fine cassiterite was investigated by adsorbance determination,electrophoretic mobility measurements and Fourier transform infra-red(FT-IR) spectrum checking.Results of the flotation experiments show that with SHA as a collector,the collecting performance is remarkably impacted by the pulp pH value as the floatability of cassiterite varies sharply when the pH changes,and flotation with SHA gives distinct maximum at about pH 6.5.Additionally,the floatability of cassiterite is determined by using SHA and TBP as collectors.The range of pulp pH for good floatability is broadened in the presence of TBP as auxiliary collector,and the utilization of TBP improves the recovery of cassiterite modestly.Moreover,the optimum pH value for cassiterite flotation is associated with adsorbance.The results of FT-IR spectrum and the electrophoretic mobility measurements indicate that the adsorption interaction between the collectors and the cassiterite is dominantly a kind of chemical bonding in the form of one or two cycle chelate rings due to the coordination of carbonyl group,hydroxamate and P=O group to the metal tin atoms,where the oxygen atoms contained in carbonyl group,hydroxamate and P=O group of the polar groups have the stereo conditions to form five-membered rings.In addition,the adsorption interactions of SHA and TBP on the surfaces of cassiterite are also dominated by means of hydrogen bonds.
基金Project(50474083) supported by the National Natural Science Foundation of ChinaProject supported by the Baoshan Iron & Steel Co. Ltd. of China
文摘Chromium ore fines containing coal (COFCC) can be rapidly heated by microwave to conduct the voluminal reduction, which lays a foundation of getting sponge ferrochromium powders with a lower content of C. Under the conditions of COFCC with n(O)-n(C) (molar ratio) as 1.00-0.84 and n(SiO2)-n(CaO) as 1.00-0.39, the samples were heated by 10 kW microwave power to reach the given temperatures and held for different times respectively. The results show that the low-C-Cr ferrochromium metal phase in the reduced materials forms before the high-C-Cr ferrochromium metal phase does. With increasing temperature the C content of ferrochromium metals is in a positive correlation with the content of Cr. The C content of ferrochromium metal in reduced materials is 0-10.07% with an average value of 4.68%. With the increase of holding time the Cr content in ferrochromium metals is in a negative correlation with the content of C, while the content of Fe changes in the contrary way. In the microwave field the kinetic conditions of carburization are closely related with the temperature of microwave heating, holding time and carbon fitting ratio.
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
基金Project(2016zztsl03) supported by the Fundamental Research Funds for the Central Universities, China Project(51374249) supported by the National Natural Science Foundation of China+1 种基金 Project(2015BAB12B02) supported by the National Key Technology R&D Program of China Project(2013B090800016) supported by Guangdong Provincial Science and Technology Plan, China
文摘An effective flotation approach is proposed for improving the recovery of molybdenite fines from a finely-disseminated molybdenum ore. To maximize the flotation recovery of molybdenum, process mineralogy of raw ore, contrast tests, optimization of operation conditions and particle size analysis were systematically investigated. Process mineralogy suggests that in the raw ore, 61.63% of molybdenite particles distribute in the 〈20 pm size fraction, and intergrow with muscovite and pyrite as the contained and disseminated type. Contrast tests indicate that conventional flotation responds to poor collection efficiency for particles less than 25 pm. Oil agglomerate flotation (OAF) process demonstrates an obvious superiority in improving the flotation recovery of molybdenite fines. Furthermore, the flotation results of OAF process reveal that the dosage of transformer oil plays a critical role on the average size of collected mineral particles (d(0), agglomerates (d^0) and the molybdenum recovery. In addition, industrial tests illustrate that compared with the Mo-S bulk flotation approach, OAF process not only increases Mo recovery and grade of molybdenum concentrate by 22.75% and 17.47% respectively, but also achieves a sulfur concentrate with a superior grade of 38.92%.
基金the Open Project of State Key Laboratory of Automotive Simulation and Control,Jilin University(20161108)the National Natural Science Foundation of China(51505221)the Fundamental Research Funds for the Central Universities(NS2019022).
文摘The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the tracking loop.Since the frequency step is usually 500 Hz or larger,the Doppler shift estimation accuracy cannot guarantee that satellite signals are brought into a stable tracking state.The straightforward solutions consist in increasing the sampling time and using zero-padding to improve the frequency resolution of the FFT.However,these solutions intensify the complexity and amount of computation.The contradiction between the acquisition accuracy and the computational load leads us to research for a more simple and effective algorithm,which achieves fine acquisition by a look-up table.After coarse acquisition using the parallel frequency acquisition(PFA)algorithm,the proposed algorithm optimizes the Doppler shift estimation through the look-up table method based on the FFT results to improve the acquisition accuracy of the Doppler shift with a minimal additional computing load.When the Doppler shift is within the queryable range of the table,the proposed algorithm can improve the Doppler shift estimation accuracy to 50 Hz for the BeiDou B1I signal.
基金Project(51105287)supported by the National Natural Science Foundation of ChinaProject(2011-P05)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject(2011-IV-009)supported by the Fundamental Research Funds for the Central Universities,China
文摘The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die.In this work,rotational fine blanking which combined the linear and rotational motion of punch and counterpunch was applied for the forming of helical gears.A three-dimensional(3D) rigid-plastic finite element model was developed on the DEFORM-3D platform.By finite element simulation and analysis,the influences of key parameters on the punch load and cut surface were investigated.It is shown that: 1) with increasing the counterforce or helical angle,the punch load and the depth of die roll increase; 2) with increasing blank holder force,the punch load increases while the depth of die roll decreases; 3) V-ring indenter facilitates an improvement in the quality.The results of this research reveal the deformation mechanism of rotational fine blanking of helical gears,and provide valuable guidelines for further experimental studies.
基金Project (2007CB714200) supported by National Basic Research Program of ChinaProject (90715018) supported by Key Research Project of National Natural Science Foundation of China
文摘A series of dynamic behavior tests on Nanjing flake-shaped fine sand were performed by using the WFI cyclic triaxial apparatus made in England. The dynamic behaviors of Nanjing flake-shaped fine sand under different static deviator stress levels and cyclic stress ratios were studied. Through comparing the effective stress path under cyclic loading with static loading, the processes of liquefaction of saturated Nanjing flake-shaped fine sand with development of dynamic pore-water pressure, including the initial compact state, compression state and dilative state, were investigated. The variation of the shear stiffness with the number of cycles and cyclic strain was investigated by analyzing the secant shear modulus in each unload-reload loop of dynamic stress-strain relationship. And by means of the exponential function, the empirical equations of the relationship between secant shear modulus Gsec, shear modulus ratio Gsec/Gmax and cyclic strain ε were established based on series of test results. The results show that according to different combinations of static deviator stress and cyclic stress, two kinds of failure patterns with deviator stress reversal or no deviator stress reversal are observed in the samples tested in this series, including cyclic mobility and the failure of accumulation residual strain. In addition, the degradation of dynamic shear modulus is due to the development of vibration pore-water pressure and it is observed that the shear modulus reduces with the progressive number of cycles.