The search for quantum spin liquid(QSL) materials has attracted significant attention in the field of condensed matter physics in recent years, however so far only a handful of them are considered as candidates hostin...The search for quantum spin liquid(QSL) materials has attracted significant attention in the field of condensed matter physics in recent years, however so far only a handful of them are considered as candidates hosting QSL ground state. Owning to their geometrically frustrated structures, Kagome materials are ideal systems to realize QSL. We synthesize the kagome structured material claringbullite(Cu_4(OH)_6FCl) and then replace inter-layer Cu with Zn to form Cu_3Zn(OH)_6FCl. Comprehensive measurements reveal that doping Zn^(2+) ions transforms magnetically ordered Cu_4(OH)_6FCl into a non-magnetic QSL candidate Cu_3Zn(OH)_6FCl. Therefore,the successful syntheses of Cu_4(OH)_6FCl and Cu_3Zn(OH)_6FCl provide not only a new platform for the study of QSL but also a novel pathway of investigating the transition between QSL and magnetically ordered systems.展开更多
随着安徽电力事业的发展,电网逐步形成巨大的互联系统,短路电流水平日渐增大,因此对故障电流限制措施的研究具有十分重要的意义。文章研究了一种串联补偿型故障限流器(fault current limiter,FCL),采用脉冲宽度调制(pulse width modulat...随着安徽电力事业的发展,电网逐步形成巨大的互联系统,短路电流水平日渐增大,因此对故障电流限制措施的研究具有十分重要的意义。文章研究了一种串联补偿型故障限流器(fault current limiter,FCL),采用脉冲宽度调制(pulse width modulation,PWM)控制双向换流开关,减小因开关装置所引起的低次谐波。在合肥电网局部短路电流超标线路进行含FCL的计算分析,得出FCL在合肥电网中最优安装方案。在合肥电网肥西母线等值系统中对该故障限流器进行仿真分析,验证了该装置的限流作用。展开更多
提出了一种故障限流器(Fault Current Limiter,FCL)的全局优化配置算法。FCL在电网正常情况下等效阻抗接近于0,且对电网无不利影响,短路故障时迅速增大等效阻抗限制短路电流,从而确保断路器可靠开断短路电流。FCL的配置是在满足限制短...提出了一种故障限流器(Fault Current Limiter,FCL)的全局优化配置算法。FCL在电网正常情况下等效阻抗接近于0,且对电网无不利影响,短路故障时迅速增大等效阻抗限制短路电流,从而确保断路器可靠开断短路电流。FCL的配置是在满足限制短路电流的前提下,使得加装FCL的数量和阻抗值最小,同时保证系统正常运行。通过进行短路计算,首先确定安装FCL能够可靠启动的支路,应用支路追加法形成导纳矩阵。基于PSO算法对候选支路进行优化选择,通过FCL的启动条件缩小搜索范围,实现FCL的安装位置、数量以及阻抗值的优化配置。最后,应用该算法对湖南电网2015规划数据进行了计算分析,得出了相应的FCL的优化配置方案。展开更多
The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reduc...The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reducing the erosion of the LMCL are challenging,not only theoretically,but also practically.In this work,a novel LMCL is designed with a resistive wall that can be connected to the current-limiting circuit inside the cavity.Specifically,a novel fault current limiter(FCL)topology is put forward where the novel LMCL is combined with a fast switch and current-limiting reactor.Further,the liquid metal self-pinch effect is modeled mathematically in three dimensions,and the gas-liquid two-phase dynamic diagrams under different short-circuit currents are obtained by simulation.The simulation results indicate that with the increase of current,the time for the liquid metal-free surface to begin depressing is reduced,and the position of the depression also changes.Different kinds of bubbles formed by the depressions gradually extend,squeeze,and break.With the increase of current,the liquid metal takes less time to break,but breaks still occur at the edge of the channel,forming arc plasma.Finally,relevant experiments are conducted for the novel FCL topology.The arcing process and current transfer process are analyzed in particular.Comparisons of the peak arc voltage,arcing time,current limiting efficiency,and electrode erosion are presented.The results demonstrate that the arc voltage of the novel FCL topology is reduced by more than 4.5times and the arcing time is reduced by more than 12%.The erosions of the liquid metal and electrodes are reduced.Moreover,the current limiting efficiency of the novel FCL topology is improved by 1%–5%.This work lays a foundation for the topology and optimal design of the LMCL.展开更多
基金Supported by the National Key Research and Development Program(2016YFA0300502,2017YFA0302901,2016YFA0300604 and 2016YFA0300501)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB28000000,XDB07020100and QYZDB-SSW-SLH043)the National Natural Science Foundation of China under Grant Nos 11421092,11574359,11674370,11774399,11474330 and U1732154
文摘The search for quantum spin liquid(QSL) materials has attracted significant attention in the field of condensed matter physics in recent years, however so far only a handful of them are considered as candidates hosting QSL ground state. Owning to their geometrically frustrated structures, Kagome materials are ideal systems to realize QSL. We synthesize the kagome structured material claringbullite(Cu_4(OH)_6FCl) and then replace inter-layer Cu with Zn to form Cu_3Zn(OH)_6FCl. Comprehensive measurements reveal that doping Zn^(2+) ions transforms magnetically ordered Cu_4(OH)_6FCl into a non-magnetic QSL candidate Cu_3Zn(OH)_6FCl. Therefore,the successful syntheses of Cu_4(OH)_6FCl and Cu_3Zn(OH)_6FCl provide not only a new platform for the study of QSL but also a novel pathway of investigating the transition between QSL and magnetically ordered systems.
文摘随着安徽电力事业的发展,电网逐步形成巨大的互联系统,短路电流水平日渐增大,因此对故障电流限制措施的研究具有十分重要的意义。文章研究了一种串联补偿型故障限流器(fault current limiter,FCL),采用脉冲宽度调制(pulse width modulation,PWM)控制双向换流开关,减小因开关装置所引起的低次谐波。在合肥电网局部短路电流超标线路进行含FCL的计算分析,得出FCL在合肥电网中最优安装方案。在合肥电网肥西母线等值系统中对该故障限流器进行仿真分析,验证了该装置的限流作用。
文摘提出了一种故障限流器(Fault Current Limiter,FCL)的全局优化配置算法。FCL在电网正常情况下等效阻抗接近于0,且对电网无不利影响,短路故障时迅速增大等效阻抗限制短路电流,从而确保断路器可靠开断短路电流。FCL的配置是在满足限制短路电流的前提下,使得加装FCL的数量和阻抗值最小,同时保证系统正常运行。通过进行短路计算,首先确定安装FCL能够可靠启动的支路,应用支路追加法形成导纳矩阵。基于PSO算法对候选支路进行优化选择,通过FCL的启动条件缩小搜索范围,实现FCL的安装位置、数量以及阻抗值的优化配置。最后,应用该算法对湖南电网2015规划数据进行了计算分析,得出了相应的FCL的优化配置方案。
基金supported by National Natural Science Foundation of China(Nos.51777025,52177131)the Interdisciplinary Program of the Wuhan National High Magnetic Field Center(No.WHMFC202130)Huazhong University of Science and Technology。
文摘The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reducing the erosion of the LMCL are challenging,not only theoretically,but also practically.In this work,a novel LMCL is designed with a resistive wall that can be connected to the current-limiting circuit inside the cavity.Specifically,a novel fault current limiter(FCL)topology is put forward where the novel LMCL is combined with a fast switch and current-limiting reactor.Further,the liquid metal self-pinch effect is modeled mathematically in three dimensions,and the gas-liquid two-phase dynamic diagrams under different short-circuit currents are obtained by simulation.The simulation results indicate that with the increase of current,the time for the liquid metal-free surface to begin depressing is reduced,and the position of the depression also changes.Different kinds of bubbles formed by the depressions gradually extend,squeeze,and break.With the increase of current,the liquid metal takes less time to break,but breaks still occur at the edge of the channel,forming arc plasma.Finally,relevant experiments are conducted for the novel FCL topology.The arcing process and current transfer process are analyzed in particular.Comparisons of the peak arc voltage,arcing time,current limiting efficiency,and electrode erosion are presented.The results demonstrate that the arc voltage of the novel FCL topology is reduced by more than 4.5times and the arcing time is reduced by more than 12%.The erosions of the liquid metal and electrodes are reduced.Moreover,the current limiting efficiency of the novel FCL topology is improved by 1%–5%.This work lays a foundation for the topology and optimal design of the LMCL.