Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by ad...Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by adding carboxyl-modified silica(C-SiO2),PAA,and CaCl_(2) to achieve higher viscosity over 25℃.The rheological behavior of C-SiO_(2)-based shear thickening fluid(CS-STF)was investigated at a temperature range of 25–55℃.Unlike SiO_(2)-based STF,which exhibits single-step thickening and a negative correlation between viscosity and temperature.As the C-SiO_(2) content was 41%(w/w)and the mass ratio of PAA:CaCl_(2):C-SiO_(2) was 3:1:10,the CS-STF displayed a double-thickening behavior,and the peak viscosity reached 1330 Pa·s at 35℃.From the yarn pull-out test,the inter-yarn force was significantly increased with the increasing CS-STF content.Treating UHMWPE fabrics with CS-STF improved the impact resistance effectively.In the blunt impact test,the U-CS fabrics with high CS-STF content(121.45 wt%)experienced penetration failure under high impact energy(18 J)due to stress concentration caused by the shear thickening behavior.The knife stabbing test demonstrated that U-CS fabrics with appropriate content(88.38 wt%)have the best stabbing resistance in various impact energies.Overall,this study proposed a high-performence STF showing double-thickening and enhancing shear-thickening behavior at a wide temperature range,the composite fabrics with the performance of resisting both the blunt and stab impact had broad application prospects in the field of personal protection.展开更多
This study aims to uses paleomagnetic and anisotropy of magnetic susceptibility(AMS)methods to recognize the initial deposit position and to track the paleoflow at the origin of an iron skarn-related deposit.The Yaman...This study aims to uses paleomagnetic and anisotropy of magnetic susceptibility(AMS)methods to recognize the initial deposit position and to track the paleoflow at the origin of an iron skarn-related deposit.The Yamansu deposit is located in eastern Tianshan(Charvet,2007).This province has a substantial mining potential for Fe–(Cu)skarn,Cu–Ni and V–Ti orthomagmatic deposits,and orogenic Au lodes(Branquet et al.,2012;Zhang et a.,2005;Mao et al.,2005).Recent publication dates the Yamansu deposit at 323 Ma,and uses this deposit to define a model of Submarine Volcanogenic Iron Oxide(SVIO)deposits(Hou et al.,展开更多
The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on t...The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on the ballistic resistance of aramid plain fabrics is investigated by varying the seaming process.The ballistic experiment uses 8 mm diameter spherical projectiles to impact different fabric sample targets with velocities of 230 m/s and 400 m/s.The ballistic performance of seamed and unseamed fabrics is characterized by the specific energy absorption(SEA)values of the fabrics.The results show that the seamed fabric has a better energy absorption capacity than the unseamed fabric,e.g.,the SEA of sample 5(seaming lines on every four yarns in a single-ply fabric system)is 135%of sample 1(plain weave without thread seaming).In the single-layer system,the effect of the seaming technique on the energy absorption of the fabric in significant when considering seaming density,seaming orientation,seaming distance,and seaming material on the plain fabric;In addition,it is found that in multi-layer systems,seamed panels(e.g.,sample 7)exhibit better ballistic performance than multi-layer fabrics(e.g.,sample 2),and the specific energy absorption of sample 7 is approximately 156%and 200%of sample 6 and sample 2,respectively.Meanwhile,the energy absorption of the fabric decreases with the increase of impact velocity,which is related to the energy absorption mechanism of the soft fabric system at high impact velocities.The yarn pull-out tests shows that the constraint provided by the seaming thread increases the friction between the fabric-forming yarns.However,when the constraint exceeds a certain level,it is detrimental to the energy absorption of the fabric,which may be due to the overconstraint of yarn mobility.展开更多
Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and...Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.展开更多
Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the...Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.展开更多
Hyperledger Fabric是一个主流的联盟链平台,当面临多笔并发执行且相互关联的交易时,现有架构容易生成大量无效交易,这严重降低了系统的有效交易处理能力。为了解决这一问题,提出一种融合映射与有向无环图(DAG)的冲突消除机制—FabricIM...Hyperledger Fabric是一个主流的联盟链平台,当面临多笔并发执行且相互关联的交易时,现有架构容易生成大量无效交易,这严重降低了系统的有效交易处理能力。为了解决这一问题,提出一种融合映射与有向无环图(DAG)的冲突消除机制—FabricIMD(Fabric integrated with map and DAG)。该机制在背书节点处通过映射识别交易间依赖关系,并使用有向无环图对此关系进行构建,以调整交易背书顺序,从而有效避免了交易冲突现象的出现。实验证明,当存在多笔相互关联的并发交易时,FabricIMD机制能显著减少因交易冲突导致的无效交易。随着交易间冲突程度的变化,系统有效交易吞吐量提升了15.68%~96.08%。此外,在处理无关联的并发交易时,引入该机制并未对系统性能造成显著影响。综上,FabricIMD机制在避免交易冲突现象出现的同时提高了系统有效交易吞吐量,减少了无效交易数量。展开更多
Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current r...Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.展开更多
Chemical warfare agents(CWAs)are extremely lethal substances used in warfare and terrorism,capable of causing permanent damage even in small doses,despite medical intervention.Therefore,detection,protection,and detoxi...Chemical warfare agents(CWAs)are extremely lethal substances used in warfare and terrorism,capable of causing permanent damage even in small doses,despite medical intervention.Therefore,detection,protection,and detoxification of CWAs are vital for the safety of first responders,military personnel,and civilians,driving significant research in this area.Herein,we designed and synthesized a poly(-diallyldimethylammonium chloride)(PDDA)mediated cupric oxide(CuO)functionalized activated carbon fabric(ACF),termed ACF@PDDA-CuO,as an adsorbent filter material for self-detoxifying chemical protective clothing.PDDA,a positively charged polyelectrolyte,effectively binds in-situ synthesized CuO to the negatively charged ACF surface,serving as a suitable binder.This study demonstrates the synergistic effects of PDDA-CuO functionalization on ACF,where PDDA treatment enhanced mechanical and comfort properties,and CuO crystal growth significantly improved detoxification efficacy against the CWA Nerve Agent Sarin.Comprehensive analyses,including FTIR,BET surface area analysis,SEM,EDS,TEM,STEM,TGA,XPS,and XRD,confirmed the uniform deposition of CuO and PDDA on the ACF surface.The Cu content on ACF@PDDA-CuO samples was measured via iodometric titration.The materials were evaluated for tensile strength,air permeability,water vapor permeability,nerve agent(Sarin)detoxification,and blister agent(Sulfur Mustard)breakthrough time to assess their applicability for protective clothing.The optimized PDDA-CuO on ACF detoxified 82.04%of Sarin within 18 h,compared to 25.22%by ACF alone,and enhanced tensile strength by 23.67%,air permeability by 24.63%,and water vapor permeability by 3.94%,while maintaining protection against Sulfur Mustard for 24 h.These findings indicate that ACF@PDDA-CuO is a promising candidate for CWA protective clothing,offering robust protection with enhanced comfort.展开更多
随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向...随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向块内冲突的方案缺乏高效的冲突检测和避免方法,同时现有研究往往忽略区块间冲突对吞吐量的不利影响.提出了一种Fabric的优化方案Fabric-HT(fabric with high throughput),从区块内和区块间2方面入手,有效降低事务间并发冲突和提高系统吞吐量.针对区块内事务冲突,提出了一种事务调度机制,根据块内冲突事务集定义了一种高效数据结构——依赖关系链,识别具有“危险结构”的事务并提前中止,合理调度事务和消除冲突;针对区块间事务冲突,将冲突事务检测提前至排序节点完成,建立以“推送-匹配”为核心的冲突事务早期避免机制.在多场景下开展大量实验,结果表明Fabric-HT在吞吐量、事务中止率、事务平均执行时间、无效事务空间占用率等方面均优于对比方案.Fabric-HT吞吐量最高可达Fabric的9.51倍,是最新优化方案FabricSharp的1.18倍;空间利用率上相比FabricSharp提升了14%.此外,Fabric-HT也表现出较好的鲁棒性和抗攻击能力.展开更多
基金the Major Science and Technology Demonstration Projects in Jiangsu Province(Grant No.BE2022608).
文摘Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by adding carboxyl-modified silica(C-SiO2),PAA,and CaCl_(2) to achieve higher viscosity over 25℃.The rheological behavior of C-SiO_(2)-based shear thickening fluid(CS-STF)was investigated at a temperature range of 25–55℃.Unlike SiO_(2)-based STF,which exhibits single-step thickening and a negative correlation between viscosity and temperature.As the C-SiO_(2) content was 41%(w/w)and the mass ratio of PAA:CaCl_(2):C-SiO_(2) was 3:1:10,the CS-STF displayed a double-thickening behavior,and the peak viscosity reached 1330 Pa·s at 35℃.From the yarn pull-out test,the inter-yarn force was significantly increased with the increasing CS-STF content.Treating UHMWPE fabrics with CS-STF improved the impact resistance effectively.In the blunt impact test,the U-CS fabrics with high CS-STF content(121.45 wt%)experienced penetration failure under high impact energy(18 J)due to stress concentration caused by the shear thickening behavior.The knife stabbing test demonstrated that U-CS fabrics with appropriate content(88.38 wt%)have the best stabbing resistance in various impact energies.Overall,this study proposed a high-performence STF showing double-thickening and enhancing shear-thickening behavior at a wide temperature range,the composite fabrics with the performance of resisting both the blunt and stab impact had broad application prospects in the field of personal protection.
文摘This study aims to uses paleomagnetic and anisotropy of magnetic susceptibility(AMS)methods to recognize the initial deposit position and to track the paleoflow at the origin of an iron skarn-related deposit.The Yamansu deposit is located in eastern Tianshan(Charvet,2007).This province has a substantial mining potential for Fe–(Cu)skarn,Cu–Ni and V–Ti orthomagmatic deposits,and orogenic Au lodes(Branquet et al.,2012;Zhang et a.,2005;Mao et al.,2005).Recent publication dates the Yamansu deposit at 323 Ma,and uses this deposit to define a model of Submarine Volcanogenic Iron Oxide(SVIO)deposits(Hou et al.,
基金supported by the National Natural Science Foundation of China(11902008)Hubei Province Science and Technology Project(2021BAA069)。
文摘The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on the ballistic resistance of aramid plain fabrics is investigated by varying the seaming process.The ballistic experiment uses 8 mm diameter spherical projectiles to impact different fabric sample targets with velocities of 230 m/s and 400 m/s.The ballistic performance of seamed and unseamed fabrics is characterized by the specific energy absorption(SEA)values of the fabrics.The results show that the seamed fabric has a better energy absorption capacity than the unseamed fabric,e.g.,the SEA of sample 5(seaming lines on every four yarns in a single-ply fabric system)is 135%of sample 1(plain weave without thread seaming).In the single-layer system,the effect of the seaming technique on the energy absorption of the fabric in significant when considering seaming density,seaming orientation,seaming distance,and seaming material on the plain fabric;In addition,it is found that in multi-layer systems,seamed panels(e.g.,sample 7)exhibit better ballistic performance than multi-layer fabrics(e.g.,sample 2),and the specific energy absorption of sample 7 is approximately 156%and 200%of sample 6 and sample 2,respectively.Meanwhile,the energy absorption of the fabric decreases with the increase of impact velocity,which is related to the energy absorption mechanism of the soft fabric system at high impact velocities.The yarn pull-out tests shows that the constraint provided by the seaming thread increases the friction between the fabric-forming yarns.However,when the constraint exceeds a certain level,it is detrimental to the energy absorption of the fabric,which may be due to the overconstraint of yarn mobility.
文摘Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.
文摘Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.
文摘Hyperledger Fabric是一个主流的联盟链平台,当面临多笔并发执行且相互关联的交易时,现有架构容易生成大量无效交易,这严重降低了系统的有效交易处理能力。为了解决这一问题,提出一种融合映射与有向无环图(DAG)的冲突消除机制—FabricIMD(Fabric integrated with map and DAG)。该机制在背书节点处通过映射识别交易间依赖关系,并使用有向无环图对此关系进行构建,以调整交易背书顺序,从而有效避免了交易冲突现象的出现。实验证明,当存在多笔相互关联的并发交易时,FabricIMD机制能显著减少因交易冲突导致的无效交易。随着交易间冲突程度的变化,系统有效交易吞吐量提升了15.68%~96.08%。此外,在处理无关联的并发交易时,引入该机制并未对系统性能造成显著影响。综上,FabricIMD机制在避免交易冲突现象出现的同时提高了系统有效交易吞吐量,减少了无效交易数量。
基金National Natural Science Foundation of China(Grant Nos.12172179,11802141 and U2341244)National Natural Science Foundation for Young Scientists of China(Grant No.12202207)+3 种基金China Postdoctoral Science Foundation(Grant No.2022M711623)Natural Science Foundation of Jiangsu Province(Grant No.BK20220968)Open Funds for Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(Grant No.CJ202201)Open Funds for Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province(Grant No.22kfgk03)。
文摘Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.
基金Defence Research and Development Establishment(DRDE),DRDO,Gwalior-474002,(India)for his keen interestencouragement.The DRDE accession number for this manuscript is DRDE-IREC-130-28/03/2024.
文摘Chemical warfare agents(CWAs)are extremely lethal substances used in warfare and terrorism,capable of causing permanent damage even in small doses,despite medical intervention.Therefore,detection,protection,and detoxification of CWAs are vital for the safety of first responders,military personnel,and civilians,driving significant research in this area.Herein,we designed and synthesized a poly(-diallyldimethylammonium chloride)(PDDA)mediated cupric oxide(CuO)functionalized activated carbon fabric(ACF),termed ACF@PDDA-CuO,as an adsorbent filter material for self-detoxifying chemical protective clothing.PDDA,a positively charged polyelectrolyte,effectively binds in-situ synthesized CuO to the negatively charged ACF surface,serving as a suitable binder.This study demonstrates the synergistic effects of PDDA-CuO functionalization on ACF,where PDDA treatment enhanced mechanical and comfort properties,and CuO crystal growth significantly improved detoxification efficacy against the CWA Nerve Agent Sarin.Comprehensive analyses,including FTIR,BET surface area analysis,SEM,EDS,TEM,STEM,TGA,XPS,and XRD,confirmed the uniform deposition of CuO and PDDA on the ACF surface.The Cu content on ACF@PDDA-CuO samples was measured via iodometric titration.The materials were evaluated for tensile strength,air permeability,water vapor permeability,nerve agent(Sarin)detoxification,and blister agent(Sulfur Mustard)breakthrough time to assess their applicability for protective clothing.The optimized PDDA-CuO on ACF detoxified 82.04%of Sarin within 18 h,compared to 25.22%by ACF alone,and enhanced tensile strength by 23.67%,air permeability by 24.63%,and water vapor permeability by 3.94%,while maintaining protection against Sulfur Mustard for 24 h.These findings indicate that ACF@PDDA-CuO is a promising candidate for CWA protective clothing,offering robust protection with enhanced comfort.
文摘随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向块内冲突的方案缺乏高效的冲突检测和避免方法,同时现有研究往往忽略区块间冲突对吞吐量的不利影响.提出了一种Fabric的优化方案Fabric-HT(fabric with high throughput),从区块内和区块间2方面入手,有效降低事务间并发冲突和提高系统吞吐量.针对区块内事务冲突,提出了一种事务调度机制,根据块内冲突事务集定义了一种高效数据结构——依赖关系链,识别具有“危险结构”的事务并提前中止,合理调度事务和消除冲突;针对区块间事务冲突,将冲突事务检测提前至排序节点完成,建立以“推送-匹配”为核心的冲突事务早期避免机制.在多场景下开展大量实验,结果表明Fabric-HT在吞吐量、事务中止率、事务平均执行时间、无效事务空间占用率等方面均优于对比方案.Fabric-HT吞吐量最高可达Fabric的9.51倍,是最新优化方案FabricSharp的1.18倍;空间利用率上相比FabricSharp提升了14%.此外,Fabric-HT也表现出较好的鲁棒性和抗攻击能力.