The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique...The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.展开更多
A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dyn...A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.展开更多
In this paper,various core-shell structured Al—Ni@ECs composites have been prepared by a spray-drying technique.The involved ECs refer to the energetic composites(ECs)of ammonium perchlorate/nitrocellulose(AP/NC,NA)a...In this paper,various core-shell structured Al—Ni@ECs composites have been prepared by a spray-drying technique.The involved ECs refer to the energetic composites(ECs)of ammonium perchlorate/nitrocellulose(AP/NC,NA)and polyvinylidene fluoride/hexanitrohexaazaisowurtzitane(PVDF/CL-20,PC).Two Al—Ni mixtures were prepared at atomic ratios of 1:1 and 1:3 and named as Al/Ni and Al/3Ni,respectively.The thermal reactivity and combustion behaviors of Al—Ni@ECs composites have been comprehensively investigated.Results showed that the reactivity and combustion performance of Al—Ni could be enhanced by introducing both NA and PC energetic composites.Among which the Al/Ni@NA composite exhibited higher reactivity and improved combustion performance.The measured flame propagation rate(v=20.6 mm/s),average combustion wave temperature(T_(max)=1567.0°C)and maximum temperature rise rate(γ_(t)=1633.6°C/s)of Al/Ni@NA are higher than that of the Al/Ni(v=15.8 mm/s,T_(max)=858.0°C,andγ_(t)=143.5°C/s).The enhancement in combustion properties could be due to presence of the acidic gaseous products from ECs,which could etch the Al_(2)O_(3)shell on the surface of Al particles,and make the inner active Al to be easier transported,so that an intimate and faster intermetallic reaction between Al and Ni would be realized.Furthermore,the morphologies and chemical compositions of the condensed combustion products(CCPs)of Al—Ni@ECs composites were found to be different depending on the types of ECs.The compositions of CCPs are dominated with the Al—Ni intermetallics,combining with a trace amount of Al_(5)O_(6)N and Al_(2)O_(3).展开更多
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu...Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.展开更多
文摘The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.
基金supported by the National Natural Science Foundation of China (60428303)
文摘A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.
基金supported by the Nation Natural Science Foundation of China(Grant No.51776176)the Fundamental Research Funds for the Central Universities,China(Grant No.G2017KY0301)+1 种基金partially funded by NSAF project(Grant No.2030202)sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Grant No.CX2021048)。
文摘In this paper,various core-shell structured Al—Ni@ECs composites have been prepared by a spray-drying technique.The involved ECs refer to the energetic composites(ECs)of ammonium perchlorate/nitrocellulose(AP/NC,NA)and polyvinylidene fluoride/hexanitrohexaazaisowurtzitane(PVDF/CL-20,PC).Two Al—Ni mixtures were prepared at atomic ratios of 1:1 and 1:3 and named as Al/Ni and Al/3Ni,respectively.The thermal reactivity and combustion behaviors of Al—Ni@ECs composites have been comprehensively investigated.Results showed that the reactivity and combustion performance of Al—Ni could be enhanced by introducing both NA and PC energetic composites.Among which the Al/Ni@NA composite exhibited higher reactivity and improved combustion performance.The measured flame propagation rate(v=20.6 mm/s),average combustion wave temperature(T_(max)=1567.0°C)and maximum temperature rise rate(γ_(t)=1633.6°C/s)of Al/Ni@NA are higher than that of the Al/Ni(v=15.8 mm/s,T_(max)=858.0°C,andγ_(t)=143.5°C/s).The enhancement in combustion properties could be due to presence of the acidic gaseous products from ECs,which could etch the Al_(2)O_(3)shell on the surface of Al particles,and make the inner active Al to be easier transported,so that an intimate and faster intermetallic reaction between Al and Ni would be realized.Furthermore,the morphologies and chemical compositions of the condensed combustion products(CCPs)of Al—Ni@ECs composites were found to be different depending on the types of ECs.The compositions of CCPs are dominated with the Al—Ni intermetallics,combining with a trace amount of Al_(5)O_(6)N and Al_(2)O_(3).
基金Project(JCYJ20190808175801656)supported by the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2021M691427)supported by Postdoctoral Science Foundation of ChinaProject(9680086)supported by the City University of Hong Kong,China。
文摘Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.