修正线性单元(rectified linear unit,ReLU)是深度卷积神经网络常用的激活函数,但当输入为负数时,ReLU的输出为零,造成了零梯度问题;且当输入为正数时,ReLU的输出保持输入不变,使得ReLU函数的平均值恒大于零,引起了偏移现象,从而限制了...修正线性单元(rectified linear unit,ReLU)是深度卷积神经网络常用的激活函数,但当输入为负数时,ReLU的输出为零,造成了零梯度问题;且当输入为正数时,ReLU的输出保持输入不变,使得ReLU函数的平均值恒大于零,引起了偏移现象,从而限制了深度卷积神经网络的学习速率和学习效果.针对ReLU函数的零梯度问题和偏移现象,根据"输出均值接近零的激活函数能够提升神经网络学习性能"原理对其进行改进,提出SLU(softplus linear unit)函数.首先,对负数输入部分进行softplus处理,使得负数输入时SLU函数的输出为负,从而输出平均值更接近于零,减缓了偏移现象;其次,为保证梯度平稳,对SLU的参数进行约束,并固定正数部分的参数;最后,根据SLU对正数部分的处理调整负数部分的参数,确保激活函数在零点处连续可导,信息得以双向传播.设计深度自编码模型在数据集MINST上进行无监督学习,设计网中网卷积神经网络模型在数据集CIFAR-10上进行监督学习.实验结果表明,与ReLU及其相关改进单元相比,基于SLU函数的神经网络模型具有更好的特征学习能力和更高的学习精度.展开更多
由于背景环境复杂,检测物体易受部分遮挡、天气以及光线变化等因素的影响,传统目标检测方法存在提取特征难、检测准确率低、检测耗时长等缺陷.为了改善传统目标检测方法存在的缺陷,实现快速准确的目标检测,提出了一种基于快速区域卷积...由于背景环境复杂,检测物体易受部分遮挡、天气以及光线变化等因素的影响,传统目标检测方法存在提取特征难、检测准确率低、检测耗时长等缺陷.为了改善传统目标检测方法存在的缺陷,实现快速准确的目标检测,提出了一种基于快速区域卷积神经网络(faster regions with convolutional neural network,Faster-RCNN)算法的轻量化改进方法,即针对算法Inception-V2特征提取网络进行轻量化改进,并以带泄露线性整流(leaky rectified linear unit,Leaky ReLU)作为激活函数,解决使用线性整流(rectified linear unit,ReLU)激活函数存在的神经元输入为负数时输出为0的问题.基于上述改进方法,选择沙滩废弃物的检测为案例以验证方法的有效性,并且结合不同特征提取网络在检测沙滩废弃物时的表现,对比了SSD(single shot multibox detector)与Faster-RCNN算法.实验结果表明:所提改进算法在实际检测中有较好的综合性能,且相比原算法Faster-RCNN_Inception-V2,轻量化改进后的Inception-V2特征提取网络卷积计算量减少51.8%,模型训练耗时缩短了9.1%,检测耗时减少了10.9%,各类别AP的平均值(mean average precision,mAP)增加了1.02%,可见所提的改进方法能够有效提高目标检测的准确率,减少检测耗时,并在沙滩废弃物检测上得到成功应用,为海滨城市的沙滩清理维护提供了技术支持与保障.展开更多
文摘修正线性单元(rectified linear unit,ReLU)是深度卷积神经网络常用的激活函数,但当输入为负数时,ReLU的输出为零,造成了零梯度问题;且当输入为正数时,ReLU的输出保持输入不变,使得ReLU函数的平均值恒大于零,引起了偏移现象,从而限制了深度卷积神经网络的学习速率和学习效果.针对ReLU函数的零梯度问题和偏移现象,根据"输出均值接近零的激活函数能够提升神经网络学习性能"原理对其进行改进,提出SLU(softplus linear unit)函数.首先,对负数输入部分进行softplus处理,使得负数输入时SLU函数的输出为负,从而输出平均值更接近于零,减缓了偏移现象;其次,为保证梯度平稳,对SLU的参数进行约束,并固定正数部分的参数;最后,根据SLU对正数部分的处理调整负数部分的参数,确保激活函数在零点处连续可导,信息得以双向传播.设计深度自编码模型在数据集MINST上进行无监督学习,设计网中网卷积神经网络模型在数据集CIFAR-10上进行监督学习.实验结果表明,与ReLU及其相关改进单元相比,基于SLU函数的神经网络模型具有更好的特征学习能力和更高的学习精度.
文摘弱小船舶目标实时检测因在海上搜救、无人船和海上交通管理等领域中的众多应用而备受关注。虽然基于深度学习的目标检测算法,如YOLO(you only look once)和SSD(single shot multibox detector)等取得了不错的目标检测性能,但是它们仍然无法实时有效检测出海上弱小船舶运动目标。针对此问题,文章提出了一种改进的深度学习网络结构,结合SELU(scaled exponential linear units)激活函数,有效解决了已有的YOLOv2算法对弱小目标检测率较低的不足以及YOLOv3算法中残差网络结构冗余的问题。实验表明,该文提出的方法在海上弱小船舶目标检测上,比原YOLO算法具有更高的检测精度、更快的检测速度和更优良的鲁棒性。该方法在低配硬件环境中仍具有实时性的特点,因此对算法的推广应用具有实际的意义。
文摘由于背景环境复杂,检测物体易受部分遮挡、天气以及光线变化等因素的影响,传统目标检测方法存在提取特征难、检测准确率低、检测耗时长等缺陷.为了改善传统目标检测方法存在的缺陷,实现快速准确的目标检测,提出了一种基于快速区域卷积神经网络(faster regions with convolutional neural network,Faster-RCNN)算法的轻量化改进方法,即针对算法Inception-V2特征提取网络进行轻量化改进,并以带泄露线性整流(leaky rectified linear unit,Leaky ReLU)作为激活函数,解决使用线性整流(rectified linear unit,ReLU)激活函数存在的神经元输入为负数时输出为0的问题.基于上述改进方法,选择沙滩废弃物的检测为案例以验证方法的有效性,并且结合不同特征提取网络在检测沙滩废弃物时的表现,对比了SSD(single shot multibox detector)与Faster-RCNN算法.实验结果表明:所提改进算法在实际检测中有较好的综合性能,且相比原算法Faster-RCNN_Inception-V2,轻量化改进后的Inception-V2特征提取网络卷积计算量减少51.8%,模型训练耗时缩短了9.1%,检测耗时减少了10.9%,各类别AP的平均值(mean average precision,mAP)增加了1.02%,可见所提的改进方法能够有效提高目标检测的准确率,减少检测耗时,并在沙滩废弃物检测上得到成功应用,为海滨城市的沙滩清理维护提供了技术支持与保障.