The paper discussed the limitation of ’Dominant wavelengt h theory’. The theoretical model and nonhomogeneous differential equation of fold and deformation of a monolayer sandwiched-in limited and different thickn e...The paper discussed the limitation of ’Dominant wavelengt h theory’. The theoretical model and nonhomogeneous differential equation of fold and deformation of a monolayer sandwiched-in limited and different thickn ess terranes are proposed by using mechanics of elasticity. In addition, the ′D ominant wavelength theory’ is proved by the experimental folding in elastic ma terials. The folds of a monolayer sandwiched-in limited and different thickness terranes are studied inside and are explored in the field.展开更多
为了提高压电振动能量采集器的转换输出效率,提出了一种新型自供电的去整流桥同步电感开关(Self-Powered and Rectifier-Free Synchronized Switching and Discharging to a storage Capacitor through an Inductor,RF-SSDCI)功率提取...为了提高压电振动能量采集器的转换输出效率,提出了一种新型自供电的去整流桥同步电感开关(Self-Powered and Rectifier-Free Synchronized Switching and Discharging to a storage Capacitor through an Inductor,RF-SSDCI)功率提取接口电路。电路由电容与三极管组成的自供电开关模块和由电感电容串联组成的功率提取模块组成。由于省去了传统的二极管整流桥结构,电路更有利于小型化与集成化。另外,电感电容串联组成的功率提取模块保证电感为储能电容充能时无需开关控制,降低了开关导通时间对电路功率提取的影响,从而减少了功率损耗。利用电路分析理论详细阐述了电路的工作原理和提取输出功率,仿真和实验结果验证了RF-SSDCI电路的有效性。RF-SSDCI的最大提取功率达到63.6μW,比SEH(Standard Energy Harvesting)电路和SP-OSCE(Self-Powered Optimized Synchronous Charge Extraction Circuit)电路提高近109.2%和135.5%。展开更多
文摘The paper discussed the limitation of ’Dominant wavelengt h theory’. The theoretical model and nonhomogeneous differential equation of fold and deformation of a monolayer sandwiched-in limited and different thickn ess terranes are proposed by using mechanics of elasticity. In addition, the ′D ominant wavelength theory’ is proved by the experimental folding in elastic ma terials. The folds of a monolayer sandwiched-in limited and different thickness terranes are studied inside and are explored in the field.
文摘为了提高压电振动能量采集器的转换输出效率,提出了一种新型自供电的去整流桥同步电感开关(Self-Powered and Rectifier-Free Synchronized Switching and Discharging to a storage Capacitor through an Inductor,RF-SSDCI)功率提取接口电路。电路由电容与三极管组成的自供电开关模块和由电感电容串联组成的功率提取模块组成。由于省去了传统的二极管整流桥结构,电路更有利于小型化与集成化。另外,电感电容串联组成的功率提取模块保证电感为储能电容充能时无需开关控制,降低了开关导通时间对电路功率提取的影响,从而减少了功率损耗。利用电路分析理论详细阐述了电路的工作原理和提取输出功率,仿真和实验结果验证了RF-SSDCI电路的有效性。RF-SSDCI的最大提取功率达到63.6μW,比SEH(Standard Energy Harvesting)电路和SP-OSCE(Self-Powered Optimized Synchronous Charge Extraction Circuit)电路提高近109.2%和135.5%。