期刊文献+
共找到339篇文章
< 1 2 17 >
每页显示 20 50 100
Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems 被引量:2
1
作者 Liu Chun'an Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期204-210,共7页
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th... A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP. 展开更多
关键词 dynamic optimization nonlinear constrained optimization evolutionary algorithm optimal solutions
在线阅读 下载PDF
Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization 被引量:1
2
作者 GAO Wei-Shang SHAO Cheng 《自动化学报》 EI CSCD 北大核心 2014年第11期2469-2479,共11页
Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence reg... Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions.In this paper,we propose an iterative dynamic diversity evolutionary algorithm(IDDEA)with contractive subregions guiding exploitation through local extrema to the global optimum in suitable steps.In IDDEA,a novel optimum estimation strategy with multi-agents evolving diversely is suggested to e?ciently compute dominance trend and establish a subregion.In addition,a subregion converging iteration is designed to redistrict a smaller subregion in current subregion for next iteration,which is based on a special dominance estimation scheme.Meanwhile,an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible agents with the lowest fitness of feasible agents.Furthermore,several engineering design optimization problems taken from the specialized literature are successfully solved by the present algorithm with high reliable solutions. 展开更多
关键词 constrained optimization evolutionary algorithm MULTI-AGENTS swarm intelligence
在线阅读 下载PDF
Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions 被引量:4
3
作者 谭冠政 周代明 +1 位作者 江斌 DIOUBATE Mamady I 《Journal of Central South University of Technology》 EI 2008年第6期845-852,共8页
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s... A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism. 展开更多
关键词 immune genetic algorithm multi-modal function optimization evolutionary computation elitist selection elitist crossover
在线阅读 下载PDF
改进的矮猫鼬优化算法求解约束优化问题
4
作者 陈淼 崔倩倩 +1 位作者 赵秋丽 赵世杰 《计算机工程与应用》 北大核心 2025年第8期351-362,共12页
为提高矮猫鼬优化算法在求解约束优化问题的寻优性能,提出一种改进的矮猫鼬优化算法(D_PCDMO)。基于矮猫鼬的生活习性,修改算法中的窥视行为,以更好模拟矮猫鼬的觅食行为;提出一种候选解更新机制,以增强算法的勘探能力,提高算法寻优性能... 为提高矮猫鼬优化算法在求解约束优化问题的寻优性能,提出一种改进的矮猫鼬优化算法(D_PCDMO)。基于矮猫鼬的生活习性,修改算法中的窥视行为,以更好模拟矮猫鼬的觅食行为;提出一种候选解更新机制,以增强算法的勘探能力,提高算法寻优性能;构造一种新的动态惩罚因子,以提升求解约束优化问题的寻优能力。通过CEC2019基准测试函数和CEC2017约束优化基准测试函数与其他算法的数值对比及4个工程优化问题的求解,实验结果表明,相比于其他对比算法,D_PCDMO算法具有收敛精度高与收敛速度快等优势,且能有效地解决复杂的工程优化问题,具有较强的竞争力。 展开更多
关键词 约束优化 矮猫鼬优化算法 窥视行为 候选解更新机制 动态惩罚因子
在线阅读 下载PDF
基于全局和声搜索算法的椭圆拟合
5
作者 雍龙泉 张媛媛 黎延海 《安徽大学学报(自然科学版)》 北大核心 2025年第1期1-7,共7页
建立了椭圆拟合问题的约束优化模型,利用绝对值函数给出了一种约束处理方法,将原问题转化为无约束优化,采用全局和声搜索算法求解.数值实验分别对长轴和短轴在坐标轴上、长轴和短轴不在坐标轴上的椭圆拟合问题进行了研究,结果表明在数... 建立了椭圆拟合问题的约束优化模型,利用绝对值函数给出了一种约束处理方法,将原问题转化为无约束优化,采用全局和声搜索算法求解.数值实验分别对长轴和短轴在坐标轴上、长轴和短轴不在坐标轴上的椭圆拟合问题进行了研究,结果表明在数据没有异常值的条件下,即使有噪声,拟合结果也较好. 展开更多
关键词 椭圆拟合 绝对值函数 约束优化 全局和声搜索算法
在线阅读 下载PDF
基于改进模拟退火遗传算法的机械臂轨迹优化 被引量:3
6
作者 徐强 徐坚磊 +3 位作者 胡燕海 陈海辉 张行 邢兆辉 《系统仿真学报》 北大核心 2025年第2期404-412,共9页
为了优化机械臂的工作轨迹,提出了一种改进模拟退火遗传算法。综合考虑机械臂的作业要求及性能特点,利用五次多项式插值的方法在关节空间内规划出一条平滑的运动轨迹。通过罚函数法处理不满足约束条件的个体,动态线性标定法对适应度函... 为了优化机械臂的工作轨迹,提出了一种改进模拟退火遗传算法。综合考虑机械臂的作业要求及性能特点,利用五次多项式插值的方法在关节空间内规划出一条平滑的运动轨迹。通过罚函数法处理不满足约束条件的个体,动态线性标定法对适应度函数进行重新标定。设置一种交叉概率和变异概率自适应调节机制改进遗传算法,并引入模拟退火算法的退火思想,有效避免了算法陷入局部最优。仿真结果表明:改进模拟退火遗传算法优化后的轨迹相比传统遗传算法有效缩短了机械臂的运动时间,进而提高了机械臂的工作效率。 展开更多
关键词 机械臂 五次多项式插值 模拟退火遗传算法 轨迹优化 罚函数法
在线阅读 下载PDF
面向复杂约束多目标优化问题的双种群双阶段进化算法
7
作者 袁志超 杨磊 +2 位作者 田井林 魏晓威 李康顺 《计算机应用》 北大核心 2025年第8期2656-2665,共10页
针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行... 针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。 展开更多
关键词 约束多目标优化 双种群 双阶段 进化算法 约束处理方法 分类方法 随机扰动
在线阅读 下载PDF
求解全局与局部最优解的多模态多目标进化算法研究进展与挑战
8
作者 吴同轩 冀俊忠 杨翠翠 《北京工业大学学报》 北大核心 2025年第7期867-882,共16页
为了揭示目前求解全局与局部最优解的多模态多目标进化算法研究与发展现状,首先,介绍了具有全局和局部最优解集的多模态多目标优化问题(multimodal multiobjective optimization problem, MMOP),说明了其相关定义和特点;其次,根据现有... 为了揭示目前求解全局与局部最优解的多模态多目标进化算法研究与发展现状,首先,介绍了具有全局和局部最优解集的多模态多目标优化问题(multimodal multiobjective optimization problem, MMOP),说明了其相关定义和特点;其次,根据现有求解该类问题的进化算法思想给出了一种分类体系,并对其中主要方法的技术特点进行了概述;然后,介绍了目前具有全局和局部最优解集的多模态多目标测试函数集,并给出了常用的评价指标;最后,通过分析领域中的挑战性问题,展望了未来多模态多目标进化算法研究的方向。 展开更多
关键词 多模态多目标优化 进化算法 分类体系 测试函数 评价指标 特征选择
在线阅读 下载PDF
考虑分散协作及数量折扣的双目标电动车辆路径优化 被引量:1
9
作者 王能民 史玮璇 +1 位作者 崔巍 张萌 《工程管理科技前沿》 CSSCI 北大核心 2024年第4期27-36,共10页
当前传统燃油车辆造成了极大的空气污染和资源浪费,电动车辆和协作物流是降低碳排放、提高运输效率的有效途径。本文基于协作物流的思想,建立以运输利润最大及配送任务完成量最大为双目标,考虑分散协作及数量折扣的带时间窗电动车辆路... 当前传统燃油车辆造成了极大的空气污染和资源浪费,电动车辆和协作物流是降低碳排放、提高运输效率的有效途径。本文基于协作物流的思想,建立以运输利润最大及配送任务完成量最大为双目标,考虑分散协作及数量折扣的带时间窗电动车辆路径优化模型。设计将贪婪随机自适应搜索—进化邻域搜索(GRASP-ELS)混合算法与ε-约束法相结合的ε-约束混合进化算法,并通过算例对模型和算法进行测试。实验结果表明:所提出的算法优于多目标优化算法NSGA-Ⅱ;通过灵敏度分析给出管理启示。本文为分散协作情境下电动车辆配送优化提供方法借鉴与决策参考。 展开更多
关键词 电动车辆路径 协作物流 数量折扣 双目标优化 ε-约束混合进化算法
在线阅读 下载PDF
大功率拖拉机HMCVT的参数优化设计 被引量:2
10
作者 夏长高 刘磊 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第5期179-186,共8页
基于大功率拖拉机设计了一种新型的高传动效率和大变速范围的液压机械无级变速器(HMCVT),采用基于惩罚函数的遗传算法,对变速器的传动系统参数进行优化设计。通过Matlab软件对液压机械无级变速器的无级变速特性、转矩特性、功率分流比... 基于大功率拖拉机设计了一种新型的高传动效率和大变速范围的液压机械无级变速器(HMCVT),采用基于惩罚函数的遗传算法,对变速器的传动系统参数进行优化设计。通过Matlab软件对液压机械无级变速器的无级变速特性、转矩特性、功率分流比特性进行仿真分析,验证所设计的传动参数的合理性。此外,通过啮合功率法对系统总传动效率进行计算,进一步验证所设计的传动参数的合理性。结果表明:该液压机械无级变速器方案能够满足大功率拖拉机无级变速调速特性,且各区段有较大范围的速度区间和较高的传动效率,变速器各工作段的传动效率都能达到80%以上。 展开更多
关键词 液压机械无级变速器 特性分析 惩罚函数 改进遗传算法 参数优化
在线阅读 下载PDF
基于混合平衡优化算法的疫苗配送路径优化 被引量:6
11
作者 陈娟 倪志伟 李华 《计算机工程》 CAS CSCD 北大核心 2024年第3期122-130,共9页
针对疫苗配送路径优化问题,在同时考虑固定成本、运输成本、制冷成本、碳排放成本和惩罚成本的情况下,提出以疫苗配送成本最小化为目标的车辆路径优化模型。为求解模型,在平衡优化器算法中引入模拟退火算法,改进平衡优化器算法容易陷入... 针对疫苗配送路径优化问题,在同时考虑固定成本、运输成本、制冷成本、碳排放成本和惩罚成本的情况下,提出以疫苗配送成本最小化为目标的车辆路径优化模型。为求解模型,在平衡优化器算法中引入模拟退火算法,改进平衡优化器算法容易陷入局部最优的不足,通过加入可变参数,提升算法平衡全局搜索和局部寻优的能力,得到一个能够稳定求出较高质量解的混合平衡优化算法。对2种不同规模的算例分别进行20次实验,将混合平衡优化算法与并行平衡优化算法、知识型蚁群算法、混合变邻域搜索算法、改进混合粒子群算法和平衡优化器算法进行对比。实验结果表明,混合平衡优化算法在小规模算例和大规模算例下得到的最小配送成本和配送成本的标准差都小于其他5种算法,其中,在小规模算例下进行实验后得到的最小配送成本分别为其他5种算法的73.5%、53.9%、69.1%、64.1%和33.4%。 展开更多
关键词 疫苗冷链配送 车辆路径优化 资源满意度 惩罚函数 混合平衡优化算法
在线阅读 下载PDF
改进麻雀算法在列车ATO多目标优化中的应用 被引量:2
12
作者 王一栋 肖宝弟 +2 位作者 岳丽丽 李茂青 林俊亭 《铁道标准设计》 北大核心 2024年第7期192-199,共8页
针对列车自动驾驶(ATO)运行过程多目标优化问题,以列车运行安全性、列车动力学模型等因素为约束条件,考虑列车准时性、能耗、舒适性等指标,使用模糊隶属度法建立多目标优化模型。利用罚函数处理约束条件,将停车误差与限速作为惩罚项并... 针对列车自动驾驶(ATO)运行过程多目标优化问题,以列车运行安全性、列车动力学模型等因素为约束条件,考虑列车准时性、能耗、舒适性等指标,使用模糊隶属度法建立多目标优化模型。利用罚函数处理约束条件,将停车误差与限速作为惩罚项并构造出适当的惩罚函数加入到目标函数中,从而得到增广目标函数,提出基于改进麻雀算法(ISSA)的求解策略。为提高麻雀算法(SSA)的全局寻优能力,避免收敛于局部最优,引入Logistic映射、自适应超参数、变异算子对传统麻雀算法进行改进,通过测试函数对算法性能进行验证,表明ISSA算法的收敛速度、寻优精度比传统SSA算法好。以工况转换点为决策变量,通过ISSA算法对工况转换点的位置及速度进行寻优,进而获得目标速度-距离曲线。最后选取城轨车辆参数与线路数据进行仿真验证,仿真结果表明:所提优化策略相较于未优化前,舒适性提高了21.22%,能耗降低了22.41%,准时性与停车误差满足要求;与PSO优化方法相比,收敛速度更快,运行时间几乎一样的情况下能耗降低了12.74%,节能效果更佳;停车误差降低了20.45%,舒适性保持在舒适范围之内;对于速度-距离曲线,巡航距离更长、惰行距离变短、最高运行速度降低。由此可见,达到了综合优化ATO的目的,验证了ISSA优化策略的有效性。 展开更多
关键词 城市轨道交通 列车自动驾驶 多目标优化 目标速度曲线 改进麻雀算法 模糊隶属度 罚函数
在线阅读 下载PDF
求解约束优化问题的改进蛇优化算法 被引量:2
13
作者 梁昔明 史兰艳 龙文 《计算机工程与应用》 CSCD 北大核心 2024年第10期76-87,共12页
结合外点罚函数法与改进蛇优化算法求解约束优化问题,得到一种新的求解约束优化问题的算法WDFSO。算法WDFSO首先通过外点罚函数法将约束优化问题转化为一系列界约束优化问题,然后运用基于变异质心的对立学习策略与种群分类策略改进的蛇... 结合外点罚函数法与改进蛇优化算法求解约束优化问题,得到一种新的求解约束优化问题的算法WDFSO。算法WDFSO首先通过外点罚函数法将约束优化问题转化为一系列界约束优化问题,然后运用基于变异质心的对立学习策略与种群分类策略改进的蛇优化算法对所得界约束优化问题进行求解,进而获得所求约束优化问题的解。为验证算法WDFSO的有效性,选取CEC2006中19个标准约束优化问题进行数值实验,并使用Wilcoxon秩和检验来证明算法的显著性。实验结果表明,与对比算法相比,算法WDFSO求解约束优化问题具有更高的收敛精度和更好的稳定性。最后应用算法WDFSO求解两个工程约束优化问题,结果表明算法WDFSO求解性能更好。 展开更多
关键词 约束优化问题 外点罚函数法 蛇优化算法 对立学习 种群分类策略 数值实验
在线阅读 下载PDF
一种基于协同演化的自适应约束多目标进化算法 被引量:1
14
作者 韩美慧 王鹏 +1 位作者 李瑞旭 刘仲尧 《计算机工程》 CAS CSCD 北大核心 2024年第6期124-137,共14页
约束多目标优化(CMOP)问题的求解旨在将有限的搜索资源合理地配置到约束条件的满足与目标函数的优化2个方面,但问题约束的日趋复杂给求解算法带来了巨大挑战。提出一种基于协同演化的自适应约束多目标进化算法,该算法同时进化2个功能互... 约束多目标优化(CMOP)问题的求解旨在将有限的搜索资源合理地配置到约束条件的满足与目标函数的优化2个方面,但问题约束的日趋复杂给求解算法带来了巨大挑战。提出一种基于协同演化的自适应约束多目标进化算法,该算法同时进化2个功能互补的种群(主种群和存档种群),使算法在求解复杂约束问题时能够实现约束处理与目标优化之间的良好平衡。首先,主种群进行双重繁殖,首次繁殖过程通过动态适应度分配函数自适应地利用不可行解所携带的有价值信息,使种群在进化前期强调对目标函数的优化,后期强调可行性,二次繁殖则与存档种群进行合作,以提高种群收敛性并维护多样性。然后,提出一种基于角度的选择方案更新存档种群,在保证种群良好多样性的同时保持种群向Pareto前沿的搜索压力。最后,与5种先进的约束多目标进化算法在33个基准问题上进行对比实验,结果表明,所提出的算法在解决各类CMOP问题时与对比算法相比更具优势,其效率平均提高了约67%。 展开更多
关键词 协同演化算法 约束多目标优化 双重繁殖 动态适应度分配函数 不可行解
在线阅读 下载PDF
面向约束多目标优化的进化计算与梯度下降联合优化算法 被引量:1
15
作者 田野 陈津津 张兴义 《计算机应用》 CSCD 北大核心 2024年第5期1386-1392,共7页
约束多目标进化算法(CMOEA)是一类专门为解决约束多目标优化问题而设计的元启发式算法。这类算法利用基于种群的黑盒随机搜索模式,可以在不同优化问题上达到目标与约束之间的有效平衡;然而它们未有效利用函数的梯度信息,在复杂问题上收... 约束多目标进化算法(CMOEA)是一类专门为解决约束多目标优化问题而设计的元启发式算法。这类算法利用基于种群的黑盒随机搜索模式,可以在不同优化问题上达到目标与约束之间的有效平衡;然而它们未有效利用函数的梯度信息,在复杂问题上收敛过慢。但引入梯度信息不是一个简单的过程,同时计算所有目标和约束的梯度会消耗大量的计算资源,且目标和约束之间的矛盾会使梯度方向难以确定。为此,提出一种进化计算和梯度下降(GD)的联合优化算法——基于梯度辅助的多阶段约束多目标进化算法(CMOEA-MSG)。该算法包括两个阶段:在第一阶段,算法通过构建辅助问题并有选择性地计算目标或约束的梯度更新解,使种群快速收敛至可行区域;在第二阶段,算法采用约束优先原则求解原问题,保证种群的可行性和多样性。与现有同类算法在LIR-CMOP、MW和DASCMOP三个测试集上的对比结果表明,CMOEA-MSG可以更有效地解决约束多目标优化问题。 展开更多
关键词 约束多目标优化 进化算法 梯度下降 多阶段搜索
在线阅读 下载PDF
基于蜉蝣算法的负荷传感器优化机理研究 被引量:1
16
作者 张振杰 程万胜 《传感器与微系统》 CSCD 北大核心 2024年第11期20-24,共5页
弹性体是负荷式传感器的核心部件,对其合理的设计是确保传感器性能优异的关键。为了研究负荷式传感器弹性体优化机理,首先,运用有限元法(FEM)分析不同结构参数对传感器灵敏度的影响,并用最小二乘法(LSM)将分析数据进行拟合,得到灵敏度... 弹性体是负荷式传感器的核心部件,对其合理的设计是确保传感器性能优异的关键。为了研究负荷式传感器弹性体优化机理,首先,运用有限元法(FEM)分析不同结构参数对传感器灵敏度的影响,并用最小二乘法(LSM)将分析数据进行拟合,得到灵敏度和结构参数的数学模型;其次,将弹性体许用应力和尺寸范围作为约束条件,运用惩罚函数(SUMT)法,将约束条件融合到数学模型中,得到具有约束限制的数学模型;最后,用蜉蝣优化算法(MOA)对模型函数进行寻优,确定了弹性体最佳结构。将本文方法优化后的结果与FEM的优化结果进行对比,发现应用该方法优化后的弹性体灵敏度比FEM优化的灵敏度高6.83%,具有较高的应用价值。 展开更多
关键词 板环式负荷传感器 寻优分析 惩罚函数 蜉蝣优化算法
在线阅读 下载PDF
基于双阶段搜索的约束进化多任务优化算法 被引量:2
17
作者 赵楷文 王鹏 童向荣 《计算机应用》 CSCD 北大核心 2024年第5期1415-1422,共8页
高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现... 高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现多样性、收敛性和可行性之间的平衡。首先,进化过程由探索和利用两个阶段组成,分别致力于加强算法在目标空间的广泛探索能力和高效搜索能力;其次,设计一种动态约束处理策略以平衡种群中可行解的比例,从而增强算法在可行区域的探索能力;再次,提出一种回退搜索策略,利用无约束Pareto前沿所包含的信息指导算法向约束Pareto前沿快速收敛;最后,在两个基准测试集中的23个问题上进行对比实验。实验结果表明,TEMA分别在14个和13个测试问题上取得最优反世代距离(IGD)值和超体积(HV)值,体现出明显优势。 展开更多
关键词 约束多目标优化问题 进化多任务优化算法 双阶段进化机制 进化算法 约束处理技术
在线阅读 下载PDF
分布式数据驱动的多约束进化优化算法
18
作者 魏凤凤 陈伟能 《计算机应用》 CSCD 北大核心 2024年第5期1393-1400,共8页
泛在计算模式下,数据分布式获取和处理带来了分布式数据驱动优化的需求。针对数据分布获取、约束异步评估且信息缺失的挑战,构建分布式数据驱动的多约束进化优化算法(DDDEA)框架,由一系列终端节点负责数据提供和分布式评估,服务器节点... 泛在计算模式下,数据分布式获取和处理带来了分布式数据驱动优化的需求。针对数据分布获取、约束异步评估且信息缺失的挑战,构建分布式数据驱动的多约束进化优化算法(DDDEA)框架,由一系列终端节点负责数据提供和分布式评估,服务器节点负责全局进化优化。基于该框架具体实现了一个算法实例,终端节点利用局部数据构建径向基函数(RBF)模型,辅助驱动服务器节点差分进化(DE)算法对问题进行寻优。通过与3个集中式数据驱动的多约束进化优化算法在两个标准测试集的实验对比,DDDEA在68.4%的测试用例中取得显著最优结果,在84.2%的测试用例中找到可行解的成功率为1.00,表明该算法具有良好的全局搜索能力和收敛能力。 展开更多
关键词 分布式优化 数据驱动优化 约束优化 进化计算 差分进化算法
在线阅读 下载PDF
基于算法自动选择的自适应约束多目标进化算法 被引量:1
19
作者 李雪莹 刘青青 范勤勤 《控制工程》 CSCD 北大核心 2024年第12期2214-2222,共9页
约束多目标进化算法的求解性能往往取决于约束处理方法和多目标进化算法。为进一步提高其适应性和鲁棒性,提出一种基于算法自动选择的自适应约束多目标进化算法(self-adaptive constrained multi-objective evolutionary algorithm base... 约束多目标进化算法的求解性能往往取决于约束处理方法和多目标进化算法。为进一步提高其适应性和鲁棒性,提出一种基于算法自动选择的自适应约束多目标进化算法(self-adaptive constrained multi-objective evolutionary algorithm based on algorithm automation selection,SCMOEA-AAS)。在所提算法中,选取了2个性能优良的多目标进化算法作为搜索引擎,并提出一种综合的性能指标来对它们进行评价;然后,使用Q学习来实现算法的自适应选择,以适应不同类型的约束多目标优化问题。为验证所提算法的性能,实验选取了5种有竞争力的约束多目标进化算法和24个约束多目标优化问题。实验结果表明,SCMOEA-AAS在所有比较算法中取得了最佳性能。 展开更多
关键词 约束多目标优化 进化算法 强化学习 Q学习
在线阅读 下载PDF
约束优化进化算法 被引量:119
20
作者 王勇 蔡自兴 +1 位作者 周育人 肖赤心 《软件学报》 EI CSCD 北大核心 2009年第1期11-29,共19页
约束优化问题是科学和工程应用领域经常会遇到的一类数学规划问题.近年来,约束优化问题求解已成为进化计算研究的一个重要方向.从约束优化进化算法=约束处理技术+进化算法的研究框架出发,从约束处理技术和进化算法两个基本方面对约束优... 约束优化问题是科学和工程应用领域经常会遇到的一类数学规划问题.近年来,约束优化问题求解已成为进化计算研究的一个重要方向.从约束优化进化算法=约束处理技术+进化算法的研究框架出发,从约束处理技术和进化算法两个基本方面对约束优化进化算法的研究及进展进行了综述.此外,对约束优化进化算法中的一些重要问题进行了探讨.最后进行了各种算法的比较性总结,深入分析了目前约束优化进化算法中亟待解决的问题,并指出了值得进一步研究的方向. 展开更多
关键词 进化算法 约束处理技术 约束优化 多目标优化 约束优化进化算法
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部