期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Data-driven evolutionary sampling optimization for expensive problems 被引量:4
1
作者 ZHEN Huixiang GONG Wenyin WANG Ling 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期318-330,共13页
Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evo... Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evolutionary algorithms still needs to be improved.A data-driven evolutionary sampling optimization(DESO)framework is proposed,where at each generation it randomly employs one of two evolutionary sampling strategies,surrogate screening and surrogate local search based on historical data,to effectively balance global and local search.In DESO,the radial basis function(RBF)is used as the surrogate model in the sampling strategy,and different degrees of the evolutionary process are used to sample candidate points.The sampled points by sampling strategies are evaluated,and then added into the database for the updating surrogate model and population in the next sampling.To get the insight of DESO,extensive experiments and analysis of DESO have been performed.The proposed algorithm presents superior computational efficiency and robustness compared with five state-of-the-art algorithms on benchmark problems from 20 to 200 dimensions.Besides,DESO is applied to an airfoil design problem to show its effectiveness. 展开更多
关键词 evolutionary algorithm(EA) surrogate model datadriven evolutionary sampling airfoil design
在线阅读 下载PDF
A new improved Alopex-based evolutionary algorithm and its application to parameter estimation 被引量:1
2
作者 桑志祥 李绍军 董跃华 《Journal of Central South University》 SCIE EI CAS 2013年第1期123-133,共11页
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio... In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves. 展开更多
关键词 ALOPEX evolutionary algorithm Alopex-based evolutionary algorithm clone selection parameter estimation
在线阅读 下载PDF
Adaptive subsequence adjustment with evolutionary asymmetric path-relinking for TDRSS scheduling 被引量:12
3
作者 Peng Lin Linling Kuang +3 位作者 Xiang Chen Jian Yan Jianhua Lu Xiaojuan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期800-810,共11页
Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduli... Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduling model. Therefore, the improvement of scheduling efficiency in the TDRSS can not only help to increase the resource utilities, but also to reduce the scheduling failure ratio. A model of nonhomogeneous parallel machines scheduling problems with time window (NPM-TW) is firstly built up for the TDRSS, considering the distinct features of the variable preparation time and the nonhomogeneous transmission rates for different types of antennas on each tracking and data relay satellite (TDRS). Then, an adaptive subsequence adjustment (ASA) framework with evolutionary asymmetric path-relinking (EvAPR) is proposed to solve this problem, in which an asymmetric progressive crossover operation is involved to overcome the local optima by the conventional job inserting methods. The numerical results show that, compared with the classical greedy randomized adaptive search procedure (GRASP) algorithm, the scheduling failure ratio of jobs can be reduced over 11% on average by the proposed ASA with EvAPR. 展开更多
关键词 nonhomogeneous parallel machines scheduling problem with time window (NPM-TW) adaptive subsequence adjustment (ASA) asymmetric path-relinking (APR) evolutionary asymmetric path-relinking (EvAPR).
在线阅读 下载PDF
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
4
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
A single-task and multi-decision evolutionary game model based on multi-agent reinforcement learning 被引量:4
5
作者 MA Ye CHANG Tianqing FAN Wenhui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期642-657,共16页
In the evolutionary game of the same task for groups,the changes in game rules,personal interests,the crowd size,and external supervision cause uncertain effects on individual decision-making and game results.In the M... In the evolutionary game of the same task for groups,the changes in game rules,personal interests,the crowd size,and external supervision cause uncertain effects on individual decision-making and game results.In the Markov decision framework,a single-task multi-decision evolutionary game model based on multi-agent reinforcement learning is proposed to explore the evolutionary rules in the process of a game.The model can improve the result of a evolutionary game and facilitate the completion of the task.First,based on the multi-agent theory,to solve the existing problems in the original model,a negative feedback tax penalty mechanism is proposed to guide the strategy selection of individuals in the group.In addition,in order to evaluate the evolutionary game results of the group in the model,a calculation method of the group intelligence level is defined.Secondly,the Q-learning algorithm is used to improve the guiding effect of the negative feedback tax penalty mechanism.In the model,the selection strategy of the Q-learning algorithm is improved and a bounded rationality evolutionary game strategy is proposed based on the rule of evolutionary games and the consideration of the bounded rationality of individuals.Finally,simulation results show that the proposed model can effectively guide individuals to choose cooperation strategies which are beneficial to task completion and stability under different negative feedback factor values and different group sizes,so as to improve the group intelligence level. 展开更多
关键词 MULTI-AGENT reinforcement learning evolutionary game Q-LEARNING
在线阅读 下载PDF
Multi-objective evolutionary optimization for geostationary orbit satellite mission planning 被引量:4
6
作者 Jiting Li Sheng Zhang +1 位作者 Xiaolu Liu Renjie He 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期934-945,共12页
In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide... In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide. This paper proposes a general working pattern for a GEO optical satellite, as well as a target observation mission planning model. After analyzing the requirements of users and satellite control agencies, two objectives are simultaneously considered: maximization of total profit and minimization of satellite attitude maneuver angle. An NSGA-II based multi-objective optimization algorithm is proposed, which contains some heuristic principles in the initialization phase and mutation operator, and is embedded with a traveling salesman problem (TSP) optimization. The validity and performance of the proposed method are verified by extensive numerical simulations that include several types of point target distributions. 展开更多
关键词 geostationary orbit (GEO) satellitemission planning multi-objective optimization evolutionary genetic
在线阅读 下载PDF
Immune evolutionary algorithms with domain knowledge for simultaneous localization and mapping 被引量:4
7
作者 李枚毅 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第5期529-535,共7页
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de... Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms. 展开更多
关键词 immune evolutionary algorithms simultaneous localization and mapping domain knowledge
在线阅读 下载PDF
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
8
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 STRENGTH PARETO multi-objective evolutionary algorithm STATIC var COMPENSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
在线阅读 下载PDF
Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems 被引量:2
9
作者 Liu Chun'an Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期204-210,共7页
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th... A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP. 展开更多
关键词 dynamic optimization nonlinear constrained optimization evolutionary algorithm optimal solutions
在线阅读 下载PDF
Adaptive dynamic reconfiguration mechanism of unmanned swarm topology based on an evolutionary game 被引量:2
10
作者 YU Minggang NIU Yanjie +4 位作者 LIU Xueda ZHANG Dongge ZHENG Peng HE Ming LUO Ling 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期598-614,共17页
Autonomous cooperation of unmanned swarms is the research focus on“new combat forces”and“disruptive technologies”in military fields.The mechanism design is the fundamental way to realize autonomous cooperation.Fac... Autonomous cooperation of unmanned swarms is the research focus on“new combat forces”and“disruptive technologies”in military fields.The mechanism design is the fundamental way to realize autonomous cooperation.Facing the realistic requirements of a swarm network dynamic adjustment under the background of high dynamics and strong confrontation and aiming at the optimization of the coordination level,an adaptive dynamic reconfiguration mechanism of unmanned swarm topology based on an evolutionary game is designed.This paper analyzes military requirements and proposes the basic framework of autonomous cooperation of unmanned swarms,including the emergence of swarm intelligence,information network construction and collaborative mechanism design.Then,based on the framework,the adaptive dynamic reconfiguration mechanism is discussed in detail from two aspects:topology dynamics and strategy dynamics.Next,the unmanned swarms’community network is designed,and the network characteristics are analyzed.Moreover,the mechanism characteristics are analyzed by numerical simulation,focusing on the impact of key parameters,such as cost,benefit coefficient and adjustment rate on the level of swarm cooperation.Finally,the conclusion is made,which is expected to provide a theoretical reference and decision support for cooperative mode design and combat effectiveness generation of unmanned swarm operations. 展开更多
关键词 unmanned swarm operation autonomous collaboration topology reconstruction evolutionary game
在线阅读 下载PDF
Evolutionary many objective optimization based on bidirectional decomposition 被引量:1
11
作者 LYU Chengzhong LI Weimin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期319-326,共8页
The decomposition based approach decomposes a multi-objective problem into a series of single objective subproblems, which are optimized along contours towards the ideal point. But non-dominated solutions cannot sprea... The decomposition based approach decomposes a multi-objective problem into a series of single objective subproblems, which are optimized along contours towards the ideal point. But non-dominated solutions cannot spread uniformly, since the Pareto front shows different features, such as concave and convex. To improve the distribution uniformity of non-dominated solutions, a bidirectional decomposition based approach that constructs two search directions is proposed to provide a uniform distribution no matter what features problems have. Since two populations along two search directions show differently on diversity and convergence, an adaptive neighborhood selection approach is presented to choose suitable parents for the offspring generation. In order to avoid the problem of the shrinking search region caused by the close distance of the ideal and nadir points, a reference point update approach is presented. The performance of the proposed algorithm is validated with four state-of-the-art algorithms. Experimental results demonstrate the superiority of the proposed algorithm on all considered test problems. 展开更多
关键词 MANY objective optimization BIDIRECTIONAL DECOMPOSITION REFERENCE UPDATE evolutionary algorithm
在线阅读 下载PDF
Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization 被引量:1
12
作者 GAO Wei-Shang SHAO Cheng 《自动化学报》 EI CSCD 北大核心 2014年第11期2469-2479,共11页
Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence reg... Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions.In this paper,we propose an iterative dynamic diversity evolutionary algorithm(IDDEA)with contractive subregions guiding exploitation through local extrema to the global optimum in suitable steps.In IDDEA,a novel optimum estimation strategy with multi-agents evolving diversely is suggested to e?ciently compute dominance trend and establish a subregion.In addition,a subregion converging iteration is designed to redistrict a smaller subregion in current subregion for next iteration,which is based on a special dominance estimation scheme.Meanwhile,an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible agents with the lowest fitness of feasible agents.Furthermore,several engineering design optimization problems taken from the specialized literature are successfully solved by the present algorithm with high reliable solutions. 展开更多
关键词 Constrained optimization evolutionary algorithm MULTI-AGENTS swarm intelligence
在线阅读 下载PDF
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
13
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 SELF-ADAPTIVE numerical optimization evolutionary al-gorithm stochastic search algorithm.
在线阅读 下载PDF
An Evolutionary Real-Time 3D Route Planner for Aircraft 被引量:1
14
作者 郑昌文 丁明跃 周成平 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第1期47-53,共7页
A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not ... A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not required. By using problem-specific chromosome structure and genetic operators, the routes are generated in real time, with different mission constraints such as minimum route leg length and flying altitude, maximum turning angle, maximum climbing/diving angle and route distance constraint taken into account. 展开更多
关键词 evolutionary computation Route planning Route constraints Real time Aircraft.
在线阅读 下载PDF
Homology modeling and evolutionary trace analysis of superoxide dismutase from extremophile Acidithiobacillus ferrooxidans 被引量:1
15
作者 刘元东 王海东 邱冠周 《Journal of Central South University of Technology》 EI 2007年第5期612-617,共6页
The gene sod in Acidithiobacillusferrooxidans may play a crucial role in its tolerance to the extremely acidic, toxic and oxidative environment of bioleaching. For insight into the anti-toxic mechanism of the bacteria... The gene sod in Acidithiobacillusferrooxidans may play a crucial role in its tolerance to the extremely acidic, toxic and oxidative environment of bioleaching. For insight into the anti-toxic mechanism of the bacteria, a three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and its key residues were further detected by evolutionary trace analysis. Through these procedures, some trace residues were identified and spatially clustered. Among them, the residues of Asn38, Glyl03 and Glul61 are randomly scattered throughout the mapped structure; interestingly, the other residues are all distinctly clustered in a subgroup near Fe atom. From these results, this gene can be confirmed at 3D level to encode the Fe-depending superoxide dismutase and subsequently play an anti-toxic role. Furthermore, the detected key residues around Fe binding site can be conjectured to be directly responsible for Fe binding and catalytic function. 展开更多
关键词 BIOLEACHING superoxide dismutase Acidithiobacillus ferrooxidans homology modeling evolutionary trace molecular dynamics
在线阅读 下载PDF
Modified evolutionary algorithm for global optimization 被引量:1
16
作者 郭崇慧 陆玉昌 唐焕文 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期1-6,共6页
A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorith... A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases. 展开更多
关键词 global optimization evolutionary algorithms chaos search
在线阅读 下载PDF
Evolutionary game analysis of problem processing mechanism in new collaboration 被引量:1
17
作者 ZHANG Ming ZHU Jianjun WANG Hehua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期136-150,共15页
This paper analyzes a problem processing mechanism in a new collaboration system between the main manufacturer and the supplier in the"main manufacturer-supplier"mode,which has been widely applied in the col... This paper analyzes a problem processing mechanism in a new collaboration system between the main manufacturer and the supplier in the"main manufacturer-supplier"mode,which has been widely applied in the collaborative development management of the complex product.This paper adopts the collaboration theory,the evolutionary game theory and numerical simulation to analyze the decision-making mechanism where one upstream supplier and one downstream manufacturer must process an unpredicted problem without any advance contract in common.Results show that both players'decision-makings are in some correlation with the initial state,income impact coefficients,and dealing cost.It is worth noting that only the initial state influences the final decision,while income impact coefficients and dealing cost just influence the decision process.This paper shows reasonable and practical suggestions for the manufacturer and supplier in a new collaboration system for the first time and is dedicated to the managerial implications on reducing risks of processing problems. 展开更多
关键词 collaborative development management unpredicted problem problem processing mechanism evolutionary game theory
在线阅读 下载PDF
A GLOBAL OPTIMALITY CRITERION FOR EVOLUTIONARY COMPUTATION
18
作者 Liu Jianqin Wei Minjie(College of Information Engineering,Central South University of Technology,Changsha 410083,China) 《Journal of Central South University》 SCIE EI CAS 1998年第1期65-68,共4页
Focussing on unification of concrete portions into a generic form of computational evolution,a generalized theoretical framework is necessary and imperative to be built to construct a universal computational theory of... Focussing on unification of concrete portions into a generic form of computational evolution,a generalized theoretical framework is necessary and imperative to be built to construct a universal computational theory of evolution machine.The NP problem solving capacity can be traced to the nature of metaevolution mechanism with emergence features that determine corresponding homeostasis and diversity ranging in the domain of nonlinnear mapping from genotype to phenotype.In this paper a criterion that guarantees the global optimality of evolutionary computation process is proposed and proven rigorously.The global optimization criterion obtained is based on the nonparametric measarement for the whole evolution system and has great flexibility and evolvability.It leaves room for evolutionary system designing and developement.The formulization of the global description in statistical manifold space of information object family expresses evoluable evolutionary operator architecture and operation procedure in terms of evolution by evolution.The theoretical results are helpful to applications such as machine learning for automatic knowledge acquisition,pattern classification and recognition of complex images(e.q.OCR) and unsupervised system identification of nonlinear dynamical systems as well as chaos phenomena.The kernal of the formal system guided by global evolutionary optimization is proper to the implementation with objectoriented programming paradigm and abstract machine modelling. 展开更多
关键词 evolutionary COMPUTATION artificial LIFE GLOBAL optimization
在线阅读 下载PDF
Web mining based on chaotic social evolutionary programming algorithm
19
作者 Xie Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第6期1272-1276,共5页
With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evoluti... With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evolutionary programming (CSEP) algorithm. This method brings up the manner of that a cognitive agent inherits a paradigm in clustering to enable the cognitive agent to acquire a chaotic mutation operator in the betrayal. As proven in the experiment, this method can not only effectively increase web clustering efficiency, but it can also practically improve the precision of web clustering. 展开更多
关键词 web clustering chaotic social evolutionary programming K-means algorithm
在线阅读 下载PDF
Orbit Design for Responsive Space Using Multiple-objective Evolutionary Computation
20
作者 FU Xiaofeng WU Meiping ZHANG Jing 《空间科学学报》 CAS CSCD 北大核心 2012年第2期238-244,共7页
Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A... Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further. 展开更多
关键词 Multiple-objective evolutionary computation Non-dominated Sorting Genetic AlgorithmⅡ(NSGAⅡ) Low-Earth Fast Access Orbit(FAO) Low-Earth Repeat Coverage Orbit(RCO) Successive-coverage constellation for responsive deployment
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部