针对脑电检测的研究需要,研发了微弱EEG脑电信号采集专用芯片系统。该芯片使用斩波稳定去噪声技术,首先利用2 k Hz的斩波频率对100 Hz以下的EEG信号进行频域隔离,然后利用RRL纹波抑制环路反馈进行调制后位于chopper频率处的主要由失调...针对脑电检测的研究需要,研发了微弱EEG脑电信号采集专用芯片系统。该芯片使用斩波稳定去噪声技术,首先利用2 k Hz的斩波频率对100 Hz以下的EEG信号进行频域隔离,然后利用RRL纹波抑制环路反馈进行调制后位于chopper频率处的主要由失调与低频1/f闪烁噪声引起的纹波电压的抑制;单级斩波放大使用电流复用、亚阈值跨导增强技术对来自EEG传感器的低频(〈100 Hz)小信号(5~100μV)进行40 d B增益的稳定中频放大;级联S/H电路进行去累积毛刺滤波,配合前面斩波技术,达到整体低噪声性能;VGA/LPF通过改变输入、反馈/负载电容,分别进行增益/带宽的数字调整。EEG-DSP加速芯片实现对多通道采集的控制以及信号处理编码。设计使用SMICRF 180 nm混合工艺,使用Cadence的Spectre软件进行功能前/后仿真,使用Caliber工具进行DRC/LVS的版图验收。最后,对设计芯片进行实际测试,结果表明放大芯片关键性能为:8.1μW/通道、面积6.3 mm2/8通道、0.8μVrms(BW=100 Hz)等效输入噪声;该款自主研发的脑电斩波放大芯片性能达到国内外前列的水平,可进行正确的脑电EEG采集,可应用于可穿戴领域、对后续脑电数据分析具有重要的使用价值。展开更多
脑电信号(electroencephalogram, EEG)在癫痫发作检测方面具有重要意义。为了实现对癫痫发作的早期预警,充分利用δ、θ、α、β和γ波这5个频段中脑电的微弱变化信息和图模型的独特优势,提出了基于多频段图模型的脑电信号微弱异常变化...脑电信号(electroencephalogram, EEG)在癫痫发作检测方面具有重要意义。为了实现对癫痫发作的早期预警,充分利用δ、θ、α、β和γ波这5个频段中脑电的微弱变化信息和图模型的独特优势,提出了基于多频段图模型的脑电信号微弱异常变化检测方法。该方法首先对滤波后脑电信号的5个频段分别进行图模型动态建模,利用距离函数得到量化图模型之间关系的相似性分数,并用自适应权重融合算法融合所有的相似性分数得到综合性指标,最终通过假设检验来判断脑电信号是否发生异常。利用公开的波士顿儿童医院-麻省理工学院(Children’s Hospital Boston-Massachusetts Institute of Technology, CHB-MIT)头皮EEG数据库和山东大学第二医院神经内科的EEG数据库分别进行了实验,并最终用查准率、查全率和F分数来评价所提方法的检测性能。通过与基准方法比较,实验结果表明:所提方法在查准率和F分数方面优于基准方法,且查全率结果可达100%,表明所提方法能够检测所有潜在的微弱脑电信号异常变化,实现了对所有癫痫发作时刻的变化检测,具有突出的优越性和广阔的应用潜力。展开更多
文摘脑电信号(electroencephalogram, EEG)在癫痫发作检测方面具有重要意义。为了实现对癫痫发作的早期预警,充分利用δ、θ、α、β和γ波这5个频段中脑电的微弱变化信息和图模型的独特优势,提出了基于多频段图模型的脑电信号微弱异常变化检测方法。该方法首先对滤波后脑电信号的5个频段分别进行图模型动态建模,利用距离函数得到量化图模型之间关系的相似性分数,并用自适应权重融合算法融合所有的相似性分数得到综合性指标,最终通过假设检验来判断脑电信号是否发生异常。利用公开的波士顿儿童医院-麻省理工学院(Children’s Hospital Boston-Massachusetts Institute of Technology, CHB-MIT)头皮EEG数据库和山东大学第二医院神经内科的EEG数据库分别进行了实验,并最终用查准率、查全率和F分数来评价所提方法的检测性能。通过与基准方法比较,实验结果表明:所提方法在查准率和F分数方面优于基准方法,且查全率结果可达100%,表明所提方法能够检测所有潜在的微弱脑电信号异常变化,实现了对所有癫痫发作时刻的变化检测,具有突出的优越性和广阔的应用潜力。