期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Nano-Filler on the Thermal and Fire-Resistant Properties of Ethylene-Vinyl Acetate Copolymer
1
作者 杜建新 郝建薇 崔艳霞 《Journal of Beijing Institute of Technology》 EI CAS 2010年第2期237-240,共4页
Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber c... Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber contains ammonium polyphosphate (APP) as acid source, double pentaerythritol (D-PER) as carbon source and melamine (MN) as gas source. The effects of nano-filler sepiolite and boehmite on the fire-resistant property of EVM rubber based on IFR system were investigated. The test results show that the system with nano-filler of sepiolite B10 has the best fire-resistant property. The process of smoke emission and thermal decomposition, the element composition of char surface and the micro morphology of intumecent char layer of the EVM IFR system with nano-filler were also studied by NBS chamber, thermogravimetric (TG) analysis, X- ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). 展开更多
关键词 ethylene-vinyl acetate copolymer (EVM) SEPIOLITE BOEHMITE NANO-FILLER intumecent flame retardant (IFR)
在线阅读 下载PDF
A special core-shell material(Mxene@Ag@Phytate)to improve EVA composite fire safety,radiation cross-linking effect,and electromagnetic shielding
2
作者 Si-Yi Xu Dan-Yi Li +4 位作者 Wen-Rui Wang Lin Lin Ying Sun Ji-Hao Li Lin-Fan Li 《Nuclear Science and Techniques》 2025年第2期27-39,共13页
High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polym... High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polymer/MXene nanocom-posites remains challenging owing to the limited flame-retardant properties of MXene itself.This study prepared a novel MXene@Ag@PA hybrid material via radiation modification and complexation reaction.This material was used to further enhance the key properties of ethylene-vinyl acetate(EVA),such as its mechanical properties,thermal conductivity,flame retardancy,and electromagnetic shielding.The addition of two parts of this hybrid material increased the thermal conduc-tivity of EVA by 44.2%and reduced its peak exothermic rate during combustion by 30.1%compared with pure EVA.The material also significantly reduced smoke production and increased the residue content.In the X-band,the electromagnetic shielding effectiveness of the EVA composites reached 20 dB.Moreover,the MXene@Ag@PA hybrid material could be used to further enhance the mechanical properties of EVA composites under electron-beam irradiation.Thus,this study contributes to the development of MXene-based EVA advanced materials that are fire-safe,have high strength,and exhibit good electromagnetic shielding performance for various applications. 展开更多
关键词 MXene@Ag@PA ethylene-vinyl acetate(EVA) Flame retardancy Electromagnetic shielding performance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部