Eu^(2+)-doped Na_(3)Sc_(2)(PO_(4))_(3)ionic conductor possesses superior thermal quenching(TQ)resistance,which is considered as a promising phosphor for high-power lighting applications.Yet the underlying mechanism of...Eu^(2+)-doped Na_(3)Sc_(2)(PO_(4))_(3)ionic conductor possesses superior thermal quenching(TQ)resistance,which is considered as a promising phosphor for high-power lighting applications.Yet the underlying mechanism of negative thermal quenching(NTQ)is not fully understood.In this study,we focus on upconversion(UC)and downshifting(DS)luminescence of Yb^(3+)/Er^(3+)with f-f transition rather than susceptible d-f transition of Eu^(2+)in Na_(3)Sc_(2)(PO_(4))_(3),aiming to get a more insightful view.The results show that thermally accelerated dynamic defects/ions contributes to the significant negative thermal quenching(NTQ)of UC luminescence and thermally stabilized DS luminescence by promoting the radiative transition and suppressing the non-radiative transition.The UC process with slow population rate is more susceptible to perturbation of Na+migration process with time scale equivalent to that of the former,resulting in evident NTQ of UC luminescence.This research opens an avenue for understanding the NTQ mechanism of luminescence via dynamic defects/ions.展开更多
文摘Eu^(2+)-doped Na_(3)Sc_(2)(PO_(4))_(3)ionic conductor possesses superior thermal quenching(TQ)resistance,which is considered as a promising phosphor for high-power lighting applications.Yet the underlying mechanism of negative thermal quenching(NTQ)is not fully understood.In this study,we focus on upconversion(UC)and downshifting(DS)luminescence of Yb^(3+)/Er^(3+)with f-f transition rather than susceptible d-f transition of Eu^(2+)in Na_(3)Sc_(2)(PO_(4))_(3),aiming to get a more insightful view.The results show that thermally accelerated dynamic defects/ions contributes to the significant negative thermal quenching(NTQ)of UC luminescence and thermally stabilized DS luminescence by promoting the radiative transition and suppressing the non-radiative transition.The UC process with slow population rate is more susceptible to perturbation of Na+migration process with time scale equivalent to that of the former,resulting in evident NTQ of UC luminescence.This research opens an avenue for understanding the NTQ mechanism of luminescence via dynamic defects/ions.