期刊文献+
共找到695篇文章
< 1 2 35 >
每页显示 20 50 100
Utilizing electronic assisted enhancement:An innovative approach for studying the thermal decomposition and combustion of ionic liquids
1
作者 Cailing Zhang Yutao Wang +5 位作者 Baiquan Chen Zhenguo Pang Hongqi Nie Quan Zhu Peijin Liu Wei He 《Defence Technology(防务技术)》 2025年第2期179-189,共11页
Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This charact... Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This characteristic holds significant implications in the realm of novel satellite propulsion.Introducing a fraction of the electrical energy into energetic ionic liquid fuels,the thermal decomposition process is facilitated by reducing the apparent activation energy required,and electrical energy can trigger the electrochemical decomposition of ionic liquids,presenting a promising approach to enhance combustion efficiency and energy release.This study applied an external voltage during the thermal decomposition of 1-ethyl-3-methylimidazole nitrate([EMIm]NO_(3)),revealing the effective alteration of the activation energy of[EMIm]NO_(3).The pyrolysis,electrochemical decomposition,and electron assisted enhancement products were identified through Thermogravimetry-Differential scanning calorimetry-Fourier transform infrared-Mass spectrometry(TG-DSC-FTIR-MS)and gas chromatography(GC)analyses,elucidating the degradation mechanism of[EMIm]NO_(3).Furthermore,an external voltage was introduced during the combustion of[EMIm]NO_(3),demonstrating the impact of voltage on the combustion process. 展开更多
关键词 Flammable ionic liquids Kinetic methods Electron assisted enhanced thermal decomposition Electron assisted enhanced combustion
在线阅读 下载PDF
HIET:Hybrid Information Enhancement Transformer Network for Single-Photon Image Reconstruction
2
作者 Yiming Liu Xuri Yao +2 位作者 Tao Zhang Yifei Sun Ying Fu 《Journal of Beijing Institute of Technology》 2025年第1期1-17,共17页
Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face sev... Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face severe quantization as low as 1 bit/frame.These factors make it a daunting task to recover high-quality scene information from noisy single-photon data.Most current image reconstruction methods for single-photon data are mathematical approaches,which limits information utilization and algorithm performance.In this work,we propose a hybrid information enhancement model which can significantly enhance the efficiency of information utilization by leveraging attention mechanisms from both spatial and channel branches.Furthermore,we introduce a structural feature enhance module for the FFN of the transformer,which explicitly improves the model's ability to extract and enhance high-frequency structural information through two symmetric convolution branches.Additionally,we propose a single-photon data simulation pipeline based on RAW images to address the challenge of the lack of single-photon datasets.Experimental results show that the proposed method outperforms state-of-the-art methods in various noise levels and exhibits a more efficient capability for recovering high-frequency structures and extracting information. 展开更多
关键词 single-photon images hybrid information enhancement structual feature enhancement data simulation pipeline
在线阅读 下载PDF
Pressure-promoted ligand to metal energy transfer for emission enhancement of[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n metal-organic framework
3
作者 Yunfeng Yang Kaiyan Yuan +3 位作者 Binhao Yang Qing Yang Yixuan Wang Xinyi Yang 《Chinese Physics B》 2025年第3期116-121,共6页
Lanthanide metal-organic frameworks(Ln-MOFs)have received extensive attention in the development of photoluminescent(PL)materials due to their stable structures and unique line-like emission spectroscopic properties.H... Lanthanide metal-organic frameworks(Ln-MOFs)have received extensive attention in the development of photoluminescent(PL)materials due to their stable structures and unique line-like emission spectroscopic properties.However,in order to prepare Ln-MOFs with high PL quantum yield(PLQY),further improving the sensitization efficiency of the“antenna effect”is essential.Herein,remarkably enhanced PL in[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n MOF is successfully achieved via high-pressure engineering at room temperature.Notably,the PL intensity continues to increase as the pressure increases,reaching its peak at 12.0 GPa,which is 4.4 times that of the initial state.Detailed experimental and theoretical calculations have demonstrated that pressure engineering significantly narrows the bandgap of[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n,optimizing both singlet and triplet energy levels.Ultimately,higher antenna effect sensitization efficiency is achieved by promoting intersystem crossing and energy transfer processes.Our work provides a promising strategy for the development of high PLQY Ln-MOFs. 展开更多
关键词 lanthanide metal-organic frameworks high pressure green light photoluminescence enhancement energy transfer
在线阅读 下载PDF
Yielding performance of compact yielding anchor cable in working state:Analytical theory and experimental evaluation of yielding resistance enhancement effect
4
作者 Zhenyu Wang Bo Wang +2 位作者 Xinxin Guo Jinjin Li Zhenwang Ma 《International Journal of Mining Science and Technology》 2025年第1期101-120,共20页
To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The ... To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The yielding resistance enhancement effect(ω)caused by working environment constraints is evaluated through multi-layer composite sleeve hole expansion analysis,forming a theoretical framework for calculating the working yielding force.Laboratory and in-situ pull-out tests are conducted to determine the yielding performance and validate the analytical theory.The main conclusions are:(1)Yielding force and energy-release capacity increase withω,significantly outperforming the unconfined state.(2)In-situ tests under varying rockmass and geostress conditions(F1–F3)determine the yielding force increases to 183.4–290.1,204.0–290.8,and 235.0–327.1 kN.(3)The slight deviation(–12.5%to 6.2%)between the theoretical and measured yielding force confirms that the analytical theory effectively describes the working yielding performance.(4)ωincreases with higher geostress and improved rock mechanical properties,with initial geostress(σ_(0))and elastic modulus of surrounding rock(E_(3))identified as critical parameters. 展开更多
关键词 Compact yielding anchor cables Working state Yielding resistance enhancement effect Yielding mechanical performance Pull-out test
在线阅读 下载PDF
Synergistic enhancement of cathode/anode interfaces with high water-retentive organohydrogel enabling highly stable zinc ion batteries
5
作者 Xixi Zhang Qingxiu Yu +8 位作者 Guangmeng Qu Xiaoke Wang Chuanlin Li Chenggang Wang Na Li Jinzhao Huang Cuiping Han Hongfei Li Xijin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期670-679,共10页
Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased intern... Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices. 展开更多
关键词 enhanced water-retentive Organohydrogel electrolyte Stable Zn||MnO+2 batteries enhancement of cathode/anode interfaces
在线阅读 下载PDF
Tailoring MXene Thickness and Functionalization for Enhanced Room‑Temperature Trace NO_(2) Sensing 被引量:4
6
作者 Muhammad Hilal Woochul Yang +1 位作者 Yongha Hwang Wanfeng Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期71-86,共16页
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method... In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies. 展开更多
关键词 Controlled MXene thickness Gaseous functionalization approach Lower electronegativity functional groups enhanced MXene stability Trace NO_(2)sensing
在线阅读 下载PDF
Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers 被引量:2
7
作者 Andergachew Mekonnen Berhe Khalil As’ham +2 位作者 Ibrahim Al-Ani Haroldo T.Hattori Andrey E.Miroshnichenko 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期20-32,共13页
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo... Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature. 展开更多
关键词 catenary-shaped field enhancement strong coupling PLASMON EXCITON Rabi splitting
在线阅读 下载PDF
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs 被引量:2
8
作者 Hai-Rong Wu Rong Tan +6 位作者 Shi-Ping Hong Qiong Zhou Bang-Yu Liu Jia-Wei Chang Tian-Fang Luan Ning Kang Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期936-950,共15页
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant... Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs. 展开更多
关键词 Anionic/zwitterionic mixed surfactant system EMULSIFICATION Synergistic effect Low permeability reservoir enhanced oil recovery
在线阅读 下载PDF
Research progress and potential of new enhanced oil recovery methods in oilfield development 被引量:2
9
作者 YUAN Shiyi HAN Haishui +5 位作者 WANG Hongzhuang LUO Jianhui WANG Qiang LEI Zhengdong XI Changfeng LI Junshi 《Petroleum Exploration and Development》 SCIE 2024年第4期963-980,共18页
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl... This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies. 展开更多
关键词 oilfield development enhanced oil recovery mature oilfield shale oil improved water flooding chemical flooding gas flooding thermal recovery
在线阅读 下载PDF
Ground threat prediction-based path planning of unmanned autonomous helicopter using hybrid enhanced artificial bee colony algorithm 被引量:1
10
作者 Zengliang Han Mou Chen +1 位作者 Haojie Zhu Qingxian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期1-22,共22页
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro... Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method. 展开更多
关键词 UAH Path planning Ground threat prediction Hybrid enhanced Collaborative thinking
在线阅读 下载PDF
Enhanced structural damage behavior of liquid-filled tank by reactive material projectile impact 被引量:1
11
作者 Jianwen Xie Yuanfeng Zheng +4 位作者 Zhenyang Liu Chengzhe Liu Aoxin Liu Pengwan Chen Haifu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期211-229,共19页
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s... A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior. 展开更多
关键词 Reactive material projectile Hydrodynamic ram enhanced structural damage Liquid-filled tank Impact
在线阅读 下载PDF
Carbon enhanced nucleophilicity of Na_(3)V_(2)(PO_(4))_(3):A general approach for dendrite-free zinc metal anodes 被引量:1
12
作者 Sijun Wang Lingzi Hu +8 位作者 Xiaohui Li Dan Qiu Shunhang Qiu Qiancheng Zhou Wenwen Deng Xiaoying Lu Ze Yang Ming Qiu Ying Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期203-212,共10页
Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic propert... Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic property and high electrical conductivity at the same time.Herein,originating from theoretical calculation,a zincophilic particle regulation strategy is proposed to address these limitations and carbon coated Na_(3)V_(2)(PO_(4))_(3)is taken as an example to be a protective layer on zinc metal(NVPC@Zn).Na_(3)V_(2)(PO_(4))_(3)(NVP)is a common cathode material for Zn-ion batteries,which is zincophilic.Carbon materials not only offer an electron pathway to help Zn deposition onto NVPC surface,but also enhance the zinc nucleophilicity of Na_(3)V_(2)(PO_(4))_(3).Hence,this hybrid coating layer can tune zinc deposition and resist side reactions such as hydrogen generation and Zn metal corrosion.Experimentally,a symmetrical battery with NVPC@Zn electrode displays highly reversible plating/stripping behavior with a long cycle lifespan over 1800 h at2 mA cm^(-2),much better than carbon and Na_(3)V_(2)(PO_(4))_(3)solely modified Zn electrodes.When the Na_(3)V_(2)(PO_(4))_(3)is replaced with zincophobic Al2O3or zincophilic V2O3,the stability of the modified zinc anodes is also prolonged.This strategy expands the option of zincophilic materials and provides a general and effective way to stabilize the Zn electrode. 展开更多
关键词 Zinc-ion batteries Zinc anode Carbon enhanced nucleophilicity Zincophilic particle regulation
在线阅读 下载PDF
Modified electronic structure and enhanced hydroxyl adsorption make quaternary Pt-based nanosheets efficient anode electrocatalysts for formic acid-/alcohol-air fuel cells 被引量:1
13
作者 Fengling Zhao Qiang Yuan +2 位作者 Siyang Nie Liang Wu Xun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期142-150,共9页
Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)... Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources. 展开更多
关键词 Pt-based nanosheets Modifiedelectronic structure enhanced hydroxyl adsorption Formicacidand alcohol oxidation Direct liquid fuel cells
在线阅读 下载PDF
Superwetting Ag/α-Fe_(2)O_(3) anchored mesh with enhanced photocatalytic and antibacterial activities for efficient water purification 被引量:1
14
作者 Jiakai Li Changpeng Lv +5 位作者 Jiajia Song Xiaoling Zhang Xizhen Huang Yingzhuo Ma Haijie Cao Na Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期89-103,共15页
Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica... Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice. 展开更多
关键词 Superwetting Ag/α-Fe_(2)O_(3)heterostructure enhanced photocatalytic and antibacterial activities Water purification Long-term reusability
在线阅读 下载PDF
Eco-friendly calcium alginate microspheres enable enhanced profile control and oil displacement
15
作者 Xiao-Han Zhang Chang-Jing Zhou +6 位作者 Yuan-Xiang Xiao Bo Hui Yong-Gang Xie Yu-Bin Su Xin-Ru Li Jie Huang Mao-Chang Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1928-1943,共16页
Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-f... Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation. 展开更多
关键词 Calcium alginate microspheres WETTABILITY Interfacial tension RHEOLOGY VISCOELASTICITY enhanced oil recovery(EOR)
在线阅读 下载PDF
Finesse measurement for high-power optical enhancement cavity
16
作者 陆心怡 柳兴 +3 位作者 田其立 王焕 汪嘉俊 颜立新 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期414-421,共8页
Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the a... Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the advantages, disadvantages, and potential limitations of several main methods from both theoretical and practical perspectives. A variant of the existing method called the free spectral range(FSR) modulation method is proposed and compared with three other finesse measurement methods, i.e., the fast-switching cavity ring-down(CRD) method, the rapidly swept-frequency(SF) CRD method, and the ringing effect method. A high-power OEC platform with a high finesse of approximately 16000 is built and measured with the four methods. The performance of these methods is compared, and the results show that the FSR modulation method and the fast-switching CRD method are more suitable and accurate than the other two methods for high-finesse OEC measurements. The CRD method and the ringing effect method can be implemented in open loop using simple equipment and are easy to perform. Additionally, recommendations for selecting finesse measurement methods under different conditions are proposed, which benefit the development of OEC and its applications. 展开更多
关键词 optical enhancement cavity finesse measurement cavity ring-down ringing effect
在线阅读 下载PDF
Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering
17
作者 Yawen Zhan Guobin Zhang +8 位作者 Junda Shen Binbin Zhou Chenghao Zhao Junmei Guo Ming Wen Zhilong Tan Lirong Zheng Jian Lu Yang Yang Li 《Nano Materials Science》 EI CAS CSCD 2024年第3期305-311,共7页
Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with... Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M). 展开更多
关键词 ELECTRODEPOSITION DEALLOYING Surface-alloyed Noble metals Surface enhanced Raman spectroscopy substrates
在线阅读 下载PDF
Effects of fracture evolution and non-Darcy flow on the thermal performance of enhanced geothermal system in 3D complex fractured rock
18
作者 Yachen Xie Jianxing Liao +2 位作者 Pengfei Zhao Kaiwen Xia Cunbao Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期443-459,共17页
In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)... In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)model that can simultaneously consider the fracture evolution and non-Darcy flow dynamics in studying the thermo-hydro-mechanical(THM)coupling processes for heat extraction in geothermal reservoir.We further employed the model on the Habanero enhanced geothermal systems(EGS)project located in Australia.First,our findings illustrate a clear spatial-temporal variation in the thermal stress and pressure perturbations,as well as uneven spatial distribution of shear failure in 3D fracture networks.Activated shear failure is mainly concentrated in the first fracture cluster.Secondly,channeling flow have also been observed in DFNs during heat extraction and are further intensified by the expansion of fractures driven by thermal stresses.Moreover,the combined effect of non-Darcy flow and fracture evolution triggers a rapid decline in the resulting heat rate and temperature.The NR-DFN model framework and the Habanero EGS's results illustrate the importance of both fracture evolution and non-Darcy flow on the efficiency of EGS production and have the potential to promote the development of more sustainable and efficient EGS operations for stakeholders. 展开更多
关键词 Coupled THM model Non-Darcy flow Deformable DFN enhanced geothermal systems
在线阅读 下载PDF
SeisResoDiff: Seismic resolution enhancement based on a diffusion model
19
作者 Hao-Ran Zhang Yang Liu +1 位作者 Yu-Hang Sun Gui Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3166-3188,共23页
High resolution of post-stack seismic data assists in better interpretation of subsurface structures as well as high accuracy of impedance inversion. Therefore, geophysicists consistently strive to acquire higher reso... High resolution of post-stack seismic data assists in better interpretation of subsurface structures as well as high accuracy of impedance inversion. Therefore, geophysicists consistently strive to acquire higher resolution seismic images in petroleum exploration. Although there have been successful applications of conventional signal processing and machine learning for post-stack seismic resolution enhancement,there is limited reference to the seismic applications of the recent emergence and rapid development of generative artificial intelligence. Hence, we propose to apply diffusion models, among the most popular generative models, to enhance seismic resolution. Specifically, we apply the classic diffusion model—denoising diffusion probabilistic model(DDPM), conditioned on the seismic data in low resolution, to reconstruct corresponding high-resolution images. Herein the entire scheme is referred to as SeisResoDiff. To provide a comprehensive and clear understanding of SeisResoDiff, we introduce the basic theories of diffusion models and detail the optimization objective's derivation with the aid of diagrams and algorithms. For implementation, we first propose a practical workflow to acquire abundant training data based on the generated pseudo-wells. Subsequently, we apply the trained model to both synthetic and field datasets, evaluating the results in three aspects: the appearance of seismic sections and slices in the time domain, frequency spectra, and comparisons with the synthetic data using real well-logging data at the well locations. The results demonstrate not only effective seismic resolution enhancement,but also additional denoising by the diffusion model. Experimental comparisons indicate that training the model on noisy data, which are more realistic, outperforms training on clean data. The proposed scheme demonstrates superiority over some conventional methods in high-resolution reconstruction and denoising ability, yielding more competitive results compared to our previous research. 展开更多
关键词 Seismic resolution enhancement Diffusion model High resolution Reservoir characterization Deep learning Seismic data processing
在线阅读 下载PDF
Enhanced damage mechanism of reinforced concrete targets impacted by reactive PELE: An analytical model and experimental validation
20
作者 Jiahao Zhang Mengmeng Guo +3 位作者 Sheng Zhou Chao Ge Pengwan Chen Qingbo Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期12-30,共19页
Compared with PELE with inert fillings such as polyethylene and nylon,reactive PELE(RPELE)shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction.In present work,an anal... Compared with PELE with inert fillings such as polyethylene and nylon,reactive PELE(RPELE)shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction.In present work,an analytical model describing the jacket deformation and concrete target damage impacted by RPELE was presented,in which the radial rarefaction and filling deflagration reaction were considered.The impact tests of RPELE on concrete target in the 592-1012 m/s were carried out to verify the analytical model.Based on the analytical model,the angle-length evolution mechanism of the jacket bending-curling deformation was revealed,and the concrete target damage was further analyzed.One can find out that the average prediction errors of the front crater,opening and back crater are 6.8%,8.5%and 7.1%,respectively.Moreover,the effects of radial rarefaction and deflagration were discussed.It was found that the neglect of radial rarefaction overestimates the jacket deformation and concrete target damage,while the deflagration reaction of filling increases the diameter of the front crater,opening and back crater by 25.4%,24.3%and 31.1%,respectively.The research provides a valuable reference for understanding and predicting the jacket deformation and concrete target damage impacted by RPELE. 展开更多
关键词 Reactive PELE Concrete target Jacket deformation Radial rarefaction enhanced damage mechanism
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部