Cognitive Radio (CR) is an intelligent radio communication system, whose intelligence mostly comes from the Cognitive Engine (CE). Based on the techniques of software-defined radio and with the support of machine reas...Cognitive Radio (CR) is an intelligent radio communication system, whose intelligence mostly comes from the Cognitive Engine (CE). Based on the techniques of software-defined radio and with the support of machine reasoning and learning in artificial intelligence, cognitive engine implements the cognitive loop to realize the abilities of sensing, adaptation and learning in CR. Cognitive engine consists of the modeling system, knowledge base, reasoning engine, learning engine and interfaces. The key techniques are knowledge representation, machine reasoning and machine learning.展开更多
Guest Editors (Editorial Board of EET):Prof. Wei-Dong He Univ. of Electron. Sci. & Tech. of China weidong.he@uestc.edu.cnProf. Terrenee Mak The Chinese Univ. ofHong Kong, stmak@cse.cuhk.edu.hkProf. Qiang Li Univ. ...Guest Editors (Editorial Board of EET):Prof. Wei-Dong He Univ. of Electron. Sci. & Tech. of China weidong.he@uestc.edu.cnProf. Terrenee Mak The Chinese Univ. ofHong Kong, stmak@cse.cuhk.edu.hkProf. Qiang Li Univ. of Electron. Sci. & Tech. of China qli@uestc.edu.cnProf. Wei-Sheng Zhao Centre National de la Recherche Scientifique (National Center for Scientific Research) weisheng.zhao@u-psud, fr From energy generation to transportation, from energy distribution to storage, from semiconductor processing to communications, and from portable devices to data centers, energy consumption has grown to be a major limitation to usability and performance. Therefore, energy-efficient technologies become an active research area motivated by energy necessity and environmental concerns. With energy-efficient technologies, a number of epoch-making technical approaches can be expected. Energy efficiency technologies are affecting all forms of energy conversion and all aspects of life.展开更多
Completing the principal engineering components of a pumped storage power station spans between 50 and 60 months,from the inception of construction to the commencement of power generation by the first unit.The filling...Completing the principal engineering components of a pumped storage power station spans between 50 and 60 months,from the inception of construction to the commencement of power generation by the first unit.The filling of the penstock with water represents a critical phase preceding the production of electricity by the first unit.During this interval,the construction of the diversion shaft presents multiple challenges,including intricate construction procedures,considerable construction difficulty,elevated safety risks,and quality control issues.To address this issue,this study uses CFD software to analyze the flow field,pressure gradient,and head loss of shaft curved section with different curvature radius,and examines several key technologies by drawing on the practice of diversion shaft construction at the Meizhou pumped storage power station.These technologies include optimizing the curvature radius of the curved section of diversion shaft,reverse-well excavation for the shaft,and sliding-up for the lining concrete.It is found that as the curvature radius of shaft curved section reduces from 4 to 2 times the shaft diameter,the hydraulic characteristic index does not change much,and the increase of head loss accounts for about 0.18%of the total head loss of the water conveyance system.The result show that optimizing the curvature radius from 4 times to 2 times the shaft diameter is feasible and reasonable,and several improved technical measures have been proposed,such as stabilizing drill rods,mechanical scraper systems,and control technology of the relationship between concrete setting time and formwork sliding.Their implementation effectively mitigates difficulties and safety risks during shaft construction,expedites the project schedule,enhances engineering quality,and creates a 41-month timeline for the principal engineering schedule for the first power unit generation in China.展开更多
Based on radon gas properties and its existing projects applications, we firstly attempted to apply geo- physical and chemical properties of radon gas in the field of mining engineering, and imported radioac- tive mea...Based on radon gas properties and its existing projects applications, we firstly attempted to apply geo- physical and chemical properties of radon gas in the field of mining engineering, and imported radioac- tive measurement method to detect the development process of the overlying strata mining-induced fractures and their contained water quality in underground coal mining, which not only innovates a more simple-fast-reliable detection method, but also further expands the applications of radon gas detection technology in mining field. A 3D simulation design of comprehensive testing system for detecting strata mining-induced fractures on surface with radon gas (CTSR) was carried out by using a large-scale 3D solid model design software Pro/Engineer (Pro/E), which overcame three main disadvantages of ''static design thought, 2D planar design and heavy workload for remodification design'' on exiting design for mining engineering test systems. Meanwhile, based on the simulation design results of Pro/E software, the sta- bility of the jack-screw pressure bar for the key component in CTSR was checked with a material mechan- ics theory, which provided a reliable basis for materials selection during the latter machining process.展开更多
基金The work was supported by the National Basic Research Program of China("973" Program) under Grant No. 2009CB320403the National Natural Science Foundation of China under Grant No. 60832008.
文摘Cognitive Radio (CR) is an intelligent radio communication system, whose intelligence mostly comes from the Cognitive Engine (CE). Based on the techniques of software-defined radio and with the support of machine reasoning and learning in artificial intelligence, cognitive engine implements the cognitive loop to realize the abilities of sensing, adaptation and learning in CR. Cognitive engine consists of the modeling system, knowledge base, reasoning engine, learning engine and interfaces. The key techniques are knowledge representation, machine reasoning and machine learning.
文摘Guest Editors (Editorial Board of EET):Prof. Wei-Dong He Univ. of Electron. Sci. & Tech. of China weidong.he@uestc.edu.cnProf. Terrenee Mak The Chinese Univ. ofHong Kong, stmak@cse.cuhk.edu.hkProf. Qiang Li Univ. of Electron. Sci. & Tech. of China qli@uestc.edu.cnProf. Wei-Sheng Zhao Centre National de la Recherche Scientifique (National Center for Scientific Research) weisheng.zhao@u-psud, fr From energy generation to transportation, from energy distribution to storage, from semiconductor processing to communications, and from portable devices to data centers, energy consumption has grown to be a major limitation to usability and performance. Therefore, energy-efficient technologies become an active research area motivated by energy necessity and environmental concerns. With energy-efficient technologies, a number of epoch-making technical approaches can be expected. Energy efficiency technologies are affecting all forms of energy conversion and all aspects of life.
文摘Completing the principal engineering components of a pumped storage power station spans between 50 and 60 months,from the inception of construction to the commencement of power generation by the first unit.The filling of the penstock with water represents a critical phase preceding the production of electricity by the first unit.During this interval,the construction of the diversion shaft presents multiple challenges,including intricate construction procedures,considerable construction difficulty,elevated safety risks,and quality control issues.To address this issue,this study uses CFD software to analyze the flow field,pressure gradient,and head loss of shaft curved section with different curvature radius,and examines several key technologies by drawing on the practice of diversion shaft construction at the Meizhou pumped storage power station.These technologies include optimizing the curvature radius of the curved section of diversion shaft,reverse-well excavation for the shaft,and sliding-up for the lining concrete.It is found that as the curvature radius of shaft curved section reduces from 4 to 2 times the shaft diameter,the hydraulic characteristic index does not change much,and the increase of head loss accounts for about 0.18%of the total head loss of the water conveyance system.The result show that optimizing the curvature radius from 4 times to 2 times the shaft diameter is feasible and reasonable,and several improved technical measures have been proposed,such as stabilizing drill rods,mechanical scraper systems,and control technology of the relationship between concrete setting time and formwork sliding.Their implementation effectively mitigates difficulties and safety risks during shaft construction,expedites the project schedule,enhances engineering quality,and creates a 41-month timeline for the principal engineering schedule for the first power unit generation in China.
基金support for this work provided by the Fundamental Research Funds for the Central Universities(China University of Mining & Technology) (No. 2010ZDP02B02)the State Key Laboratory of Coal Resources and Safe Mining(No. SKLCRSM08X02)
文摘Based on radon gas properties and its existing projects applications, we firstly attempted to apply geo- physical and chemical properties of radon gas in the field of mining engineering, and imported radioac- tive measurement method to detect the development process of the overlying strata mining-induced fractures and their contained water quality in underground coal mining, which not only innovates a more simple-fast-reliable detection method, but also further expands the applications of radon gas detection technology in mining field. A 3D simulation design of comprehensive testing system for detecting strata mining-induced fractures on surface with radon gas (CTSR) was carried out by using a large-scale 3D solid model design software Pro/Engineer (Pro/E), which overcame three main disadvantages of ''static design thought, 2D planar design and heavy workload for remodification design'' on exiting design for mining engineering test systems. Meanwhile, based on the simulation design results of Pro/E software, the sta- bility of the jack-screw pressure bar for the key component in CTSR was checked with a material mechan- ics theory, which provided a reliable basis for materials selection during the latter machining process.