Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system...Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system have not been found despite continuous effort.Without such local conservation laws,energy and momentum can be instantaneously transported across spacetime,which is unphysical and casts doubt on the validity of numerical simulations based on the gyrokinetic theory.The standard Noether procedure for deriving conservation laws from corresponding symmetries does not apply to gyrokinetic systems because the gyrocenters and electromagnetic field reside on different manifolds.To overcome this difficulty,we develop a high-order field theory on heterogeneous manifolds for classical particle-field systems and apply it to derive exact,local conservation laws,in particular the energy–momentum conservation laws,for the electromagnetic gyrokinetic system.A weak Euler–Lagrange(EL)equation is established to replace the standard EL equation for the particles.It is discovered that an induced weak EL current enters the local conservation laws,and it is the new physics captured by the high-order field theory on heterogeneous manifolds.A recently developed gauge-symmetrization method for high-order electromagnetic field theories using the electromagnetic displacement-potential tensor is applied to render the derived energy–momentum conservation laws electromagnetic gauge-invariant.展开更多
To evaluate the coal burst proneness more precisely,a new energy criterion namely the residual elastic energy index was proposed.This study begins by performing the single-cyclic loading-unloading uniaxial compression...To evaluate the coal burst proneness more precisely,a new energy criterion namely the residual elastic energy index was proposed.This study begins by performing the single-cyclic loading-unloading uniaxial compression tests with five pre-peak unloading stress levels to explore the energy storage characteristics of coal.Five types of coals from different mines were tested,and the instantaneous destruction process of the coal specimens under compression loading was recorded using a high speed camera.The results showed a linear relationship between the elastic strain energy density and input energy density,which confirms the linear energy storage law of coal.Based on this linear energy storage law,the peak elastic strain energy density of each coal specimen was obtained precisely.Subsequently,a new energy criterion of coal burst proneness was established,which was called the residual elastic energy index(defined as the difference between the peak elastic strain energy density and post peak failure energy density).Considering the destruction process and actual failure characteristics of coal specimens,the accuracy of evaluating coal burst proneness based on the residual elastic energy index was examined.The results indicated that the residual elastic energy index enables reliable and precise evaluations of the coal burst proneness.展开更多
Local structure-preserving algorithms including multi-symplectic, local energy- and momentum-preserving schemes are proposed for the generalized Rosenau-RLW-KdV equation based on the multi-symplectic Hamiltonian formu...Local structure-preserving algorithms including multi-symplectic, local energy- and momentum-preserving schemes are proposed for the generalized Rosenau-RLW-KdV equation based on the multi-symplectic Hamiltonian formula of the equation. Each of the present algorithms holds a discrete conservation law in any time-space region. For the original problem subjected to appropriate boundary conditions, these algorithms will be globally conservative. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results show that the proposed algorithms have satisfactory performance in providing an accurate solution and preserving the discrete invariants.展开更多
In this paper, we propose a local conservation law for the Zakharov system. The property is held in any local time- space region which is independent of the boundary condition and more essential than the global energy...In this paper, we propose a local conservation law for the Zakharov system. The property is held in any local time- space region which is independent of the boundary condition and more essential than the global energy conservation law. Based on the rule that the numerical methods should preserve the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the system. The merit of the proposed scheme is that the local energy conservation law can be conserved exactly in any time-space region. With homogeneous Dirchlet boundary conditions, the proposed LEP scheme also possesses the discrete global mass and energy conservation laws. The theoretical properties are verified by numerical results.展开更多
A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential tha...A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments.展开更多
基金supported by the Chinese Scholarship Council(CSC)(No.201806340074)Shenzhen Clean Energy Research Institute and National Natural Science Foundation of China(No.12005141)+3 种基金supported by the US Department of Energy(No.DE-AC02-09CH11466)supported by the National MC Energy R&D Program(No.2018YFE0304100)National Key Research and Development Program(Nos.2016YFA0400600,2016YFA0400601 and 2016YFA0400602)the National Natural Science Foundation of China(Nos.11905220 and 11805273)。
文摘Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system have not been found despite continuous effort.Without such local conservation laws,energy and momentum can be instantaneously transported across spacetime,which is unphysical and casts doubt on the validity of numerical simulations based on the gyrokinetic theory.The standard Noether procedure for deriving conservation laws from corresponding symmetries does not apply to gyrokinetic systems because the gyrocenters and electromagnetic field reside on different manifolds.To overcome this difficulty,we develop a high-order field theory on heterogeneous manifolds for classical particle-field systems and apply it to derive exact,local conservation laws,in particular the energy–momentum conservation laws,for the electromagnetic gyrokinetic system.A weak Euler–Lagrange(EL)equation is established to replace the standard EL equation for the particles.It is discovered that an induced weak EL current enters the local conservation laws,and it is the new physics captured by the high-order field theory on heterogeneous manifolds.A recently developed gauge-symmetrization method for high-order electromagnetic field theories using the electromagnetic displacement-potential tensor is applied to render the derived energy–momentum conservation laws electromagnetic gauge-invariant.
基金This work was supported by the National Natural Science Foundation of China(No.41877272)the Fundamental Research Funds for the Central Universities of Southeast University(No.2242021R10080).
文摘To evaluate the coal burst proneness more precisely,a new energy criterion namely the residual elastic energy index was proposed.This study begins by performing the single-cyclic loading-unloading uniaxial compression tests with five pre-peak unloading stress levels to explore the energy storage characteristics of coal.Five types of coals from different mines were tested,and the instantaneous destruction process of the coal specimens under compression loading was recorded using a high speed camera.The results showed a linear relationship between the elastic strain energy density and input energy density,which confirms the linear energy storage law of coal.Based on this linear energy storage law,the peak elastic strain energy density of each coal specimen was obtained precisely.Subsequently,a new energy criterion of coal burst proneness was established,which was called the residual elastic energy index(defined as the difference between the peak elastic strain energy density and post peak failure energy density).Considering the destruction process and actual failure characteristics of coal specimens,the accuracy of evaluating coal burst proneness based on the residual elastic energy index was examined.The results indicated that the residual elastic energy index enables reliable and precise evaluations of the coal burst proneness.
基金supported by the National Natural Science Foundation of China(Grant Nos.11201169 and 61672013)the Foundation of Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems(Grant No.201606)
文摘Local structure-preserving algorithms including multi-symplectic, local energy- and momentum-preserving schemes are proposed for the generalized Rosenau-RLW-KdV equation based on the multi-symplectic Hamiltonian formula of the equation. Each of the present algorithms holds a discrete conservation law in any time-space region. For the original problem subjected to appropriate boundary conditions, these algorithms will be globally conservative. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results show that the proposed algorithms have satisfactory performance in providing an accurate solution and preserving the discrete invariants.
基金Project supported by the National Natural Science Foundation of China(Grant No.11771213)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(Grant No.2243141701090)
文摘In this paper, we propose a local conservation law for the Zakharov system. The property is held in any local time- space region which is independent of the boundary condition and more essential than the global energy conservation law. Based on the rule that the numerical methods should preserve the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the system. The merit of the proposed scheme is that the local energy conservation law can be conserved exactly in any time-space region. With homogeneous Dirchlet boundary conditions, the proposed LEP scheme also possesses the discrete global mass and energy conservation laws. The theoretical properties are verified by numerical results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11201169,11271195,and 41231173)the Project of Graduate Education Innovation of Jiangsu Province,China(Grant No.CXLX13 366)
文摘A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments.