The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts....The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.展开更多
Infrared emissivity was studied in Zno.99Mo.olO (M is Mn, Fe or Ni) and Znl_xCoxO (x=0.01, 0.02, 0.03 and 0.04) powders synthesized by solid-state reaction at various temperatures. XRD patterns confirm the wurtzit...Infrared emissivity was studied in Zno.99Mo.olO (M is Mn, Fe or Ni) and Znl_xCoxO (x=0.01, 0.02, 0.03 and 0.04) powders synthesized by solid-state reaction at various temperatures. XRD patterns confirm the wurtzite structure of the prepared samples. No peaks of other phases arising from impurities are detected in Mn- and Co-doped ZnO, hut the peaks of ZnFe204 and NiO are observed in Zno.99Feo.010 and Zno.99Nio.o10. The SEM observations indicate that with larger grain sizes than those of Zn0.99Feo.010 and Zno.99Ni0.010, Co-doped ZnO exhibits smooth grain surfaces. The infrared absorption spectra show that infrared absorptions related to oxygen in Zn0.99M0.010 are much stronger than those in Co-doped ZnO. Co ions are dissolved into the ZnO lattice with Co2+ state from XPS spectra analysis. The infrared emissivity results imply that the emissivity of Zno.99Ni0.010 is the highest (0.829) and that of Zno.99C00.010 is the lowest (0.784) at 1 200 ℃. The emissivity of Zno.99Co0.010 decreases to the minimum (0.752) at 1 150 ℃ and then increases with growing calcination temperature. As the Co doping content grows, the emissivity of Co-doped ZnO calcined at 1 200 ℃ falls to 0.758 in the molar fraction of 3% and then ascends.展开更多
Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combus...Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6.展开更多
Malignant tumours always threaten human health.For tumour diagnosis,positron emission tomography(PET)is the most sensitive and advanced imaging technique by radiotracers,such as radioactive^(18)F,^(11)C,^(64)Cu,^(68)G...Malignant tumours always threaten human health.For tumour diagnosis,positron emission tomography(PET)is the most sensitive and advanced imaging technique by radiotracers,such as radioactive^(18)F,^(11)C,^(64)Cu,^(68)Ga,and^(89)Zr.Among the radiotracers,the radioactive^(18)F-labelled chemical agent as PET probes plays a predominant role in monitoring,detecting,treating,and predicting tumours due to its perfect half-life.In this paper,the^(18)F-labelled chemical materials as PET probes are systematically summarized.First,we introduce various radionuclides of PET and elaborate on the mechanism of PET imaging.It highlights the^(18)F-labelled chemical agents used as PET probes,including[^(18)F]-2-deoxy-2-[^(18)F]fluoro-D-glucose([^(18)F]-FDG),^(18)F-labelled amino acids,^(18)F-labelled nucleic acids,^(18)F-labelled receptors,^(18)F-labelled reporter genes,and^(18)F-labelled hypoxia agents.In addition,some PET probes with metal as a supplementary element are introduced briefly.Meanwhile,the^(18)F-labelled nanoparticles for the PET probe and the multi-modality imaging probe are summarized in detail.The approach and strategies for the fabrication of^(18)F-labelled PET probes are also described briefly.The future development of the PET probe is also prospected.The development and application of^(18)F-labelled PET probes will expand our knowledge and shed light on the diagnosis and theranostics of tumours.展开更多
As an essential candidate for environment-friendly luminescent quantum dots(QDs),CuInS-based QDs have attracted more attention in recent years.However,several drawbacks still hamper their industrial applications,such ...As an essential candidate for environment-friendly luminescent quantum dots(QDs),CuInS-based QDs have attracted more attention in recent years.However,several drawbacks still hamper their industrial applications,such as lower photoluminescence quantum yield(PLQY),complex synthetic pathways,uncontrollable emission spectra,and insufficient photostability.In this study,CuInZnS@ZnS core/shell QDs was prepared via a one-pot/three-step synthetic scheme with accurate and tunable control of PL spectra.Then their ensemble spectroscopic properties during nucleation formation,alloying,and ZnS shell growth processes were systematically investigated.PL peaks of these QDs can be precisely manipulated from 530 to 850 nm by controlling the stoichiometric ratio of Cu/In,Zn^(2+)doping and ZnS shell growth.In particular,CuInZnS@ZnS QDs possess a significantly long emission lifetime(up to 750 ns),high PLQY(up to 85%),and excellent crystallinity.Their spectroscopic evolution is well validated by Cu-deficient related intragap emission model.By controlling the stoichiometric ratio of Cu/In,two distinct Cu-deficient related emission pathways are established based on the differing oxidation states of Cu defects.Therefore,this work provides deeper insights for fabricating high luminescent ternary or quaternary-alloyed QDs.展开更多
Photoluminescence(PL)is one of the most important properties of metal nanoclusters(NCs).Achieving effi⁃cient white light emission in metal NCs with a precise structures is important for practical applications but rema...Photoluminescence(PL)is one of the most important properties of metal nanoclusters(NCs).Achieving effi⁃cient white light emission in metal NCs with a precise structures is important for practical applications but remains a great challenge.Here,we report the efficient white emission from Au_(10) NCs by elaborately deploying the surface chemistry engi⁃neering strategy.Specifically,the bis-aldehyde ligands of 4-hydroxyisophthalaldehyde(HOA)are decorated on the surface of Au_(10)(SG)_(10) NCs(glutathione denoted as SG)through the cross-linking reaction of imine bonds(-CH==N-).The combination of 477 nm blue emission from HOA ligands and 620 nm orange-yellow emission from Au_(10)(SG)_(10) NCs generates white-light emission in HOA-Au_(10)(SG)_(10) NCs in the solvent mixture of ethanol and water.More importantly,dynamic color tuning from blue light to yellow light is achieved by controlling the volume fraction of ethanol in the solvent mixture.In addi⁃tion,the as-formed imine bonds significantly improve the structural rigidity of HOA-Au_(10)(SG)_(10) NCs,resulting in the 51.2%absolute photoluminescence quantum yield(PLQY)of white emission.The present study exemplifies the paradigm to control the emission color and improve the PLQY of metal NCs through rational surface chemistry engineering.展开更多
Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temper...Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.展开更多
The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied...The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied angle shear tests(VASTs)were designed using acoustic emission(AE)detection and digital image correlation technologies to evaluate the mechanical behaviors of typical red sandstone.AE signal parameters revealed differences in the number and intensity of microcracks within the sandstone,with a test angle(α)of 50°identified as a significant turning point for its failure properties.Whenα³50°,microcrack activity intensified,and the proportion of tensile cracks increased.Asαincreased,the number of fragments generated after failure decreased,fragment sizes became smaller,and the crack network simplified.Cracks extended from the two cut slits at the ends of the rock,gradually penetrating along the centerline towards the central location,as observed from the evolution of the strain concentration field.Both cohesion(c)and internal friction angle(ϕ)measured in VAST were lower than those measured under conventional triaxial compression.展开更多
The cemented-gangue-fly-ash backfill(CGFB)prepared from coal-based solid waste materials commonly exhibits high brittleness,leading to an increased susceptibility to cracking.Uniaxial compressive strength(UCS),acousti...The cemented-gangue-fly-ash backfill(CGFB)prepared from coal-based solid waste materials commonly exhibits high brittleness,leading to an increased susceptibility to cracking.Uniaxial compressive strength(UCS),acoustic emission(AE),and scanning electron microscopy tests were conducted on CGFB samples with recycled steel fiber(RSF)contents of 0,0.5%,1.0%and 1.5%to assess the mechanical properties and damage evolution law of the CGFB.The research findings indicate that:1)When RSF contents were 0.5%,1%,and 1.5%,respectively,compared to samples without RSF,the UCS decreased by 3.86%,6.76%,and 15.59%,while toughness increased by 69%,98%,and 123%;2)The addition of RSFs reduced the post-peak stress energy activity and increased the fluctuations in the b-value;3)As the RSF dosage increased from 0 to 1.5%,the per unit dissipated strain energy increased from 5.84 to 21.51,and the post-peak released energy increased from 15.07 to 33.76,indicating that the external energy required for the CGFB sample to fail increased;4)The hydration products,such as C-S-H gel,ettringite,and micro-particle materials,were embedded in the damaged areas of the RSFs,increasing the frictional force at the interface between the RSF and CGFB matrix.The shape variability of the RSFs caused interlocking between the RSFs and the matrix.Both mechanisms strengthened the bridging effect of the RSFs in the CGFB,thereby improving the damage resistance capability of CGFB.The excellent damage resistance occurred at an RSF content of 0.5%;thus,this content is recommended for engineering applications.展开更多
Analyzing the fatigue damage characteristics of hot dry rock(HDR)affected by seawater thermal shock cycles is required for the efficient exploitation of HDR and the conservation of freshwater resources.Mechanical and ...Analyzing the fatigue damage characteristics of hot dry rock(HDR)affected by seawater thermal shock cycles is required for the efficient exploitation of HDR and the conservation of freshwater resources.Mechanical and acoustic emission(AE)monitoring tests were conducted during the triaxial compression of HDR at different confining pressures,temperatures,and numbers of seawater thermal shocks to investigate the seawater damage of HDR.The test results indicated an increase in the cumulative AE counts with increasing temperature and number of seawater thermal shocks,and a decrease in AE counts with increasing confining pressure.The effect of the number of seawater thermal shocks was significant.The AE counts were 276% higher at 15 than at 0 seawater thermal shocks.The b-value increased with the number of thermal shocks and stabilized after 5 shocks.Most of the damage was small fractures,which reduced the rock’s damage resistance.The AE time series under HDR triaxial compression exhibited multifractal features.High energy AE events dominated the damage mechanism of HDR,indicating shear damage to the HDR.Therefore,this study can provide a reference for seawater as a heat transfer fluid in the design of geothermal energy resource extraction.展开更多
The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pre...The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pressures(5,10 and 15 MPa)and numbers of impacts(1,5,10 and 15 impacts).Then,uniaxial compression tests were undertaken on the pre-damaged granite to study the evolution of stress thresholds using the crack volume strain method and acoustic emission method.The crack damage stresses determined by the two methods were compared.Additionally,based on the rise time amplitude and average frequency,the evolution law of microcracks inside rock specimens was revealed,and an improved acoustic emission method was proposed.The results indicated that as the number of impacts increased,the crack closure stress,crack damage stress,and peak stress of granite specimens initially rose and then declined,while they continuously increased with the confining pressure.The proportion of shear cracks first declined and then rose with greater number of impacts and decreased with higher confining pressure,and that of tensile cracks showed the opposite trend.The improved acoustic emission method was more accurate in identifying the crack damage stress.展开更多
Exploring the effective and efficient path of agricultural carbon emission reduction in Henan Province is of great significance to optimizing the strategic layout of China's agricultural emission reduction and car...Exploring the effective and efficient path of agricultural carbon emission reduction in Henan Province is of great significance to optimizing the strategic layout of China's agricultural emission reduction and carbon sequestration.Accordingly,the agricultural carbon emissions of each county were measured scientifically and then the spatial measurement model was utilized to clarify the spatial and temporal evolution trend and spatial effect mechanism of agricultural carbon emissions based on the county data of Henan Province from 2010 to 2020.The results showed that:(1)in 2020,the total agricultural carbon emissions were 134.7274 million tons,with the high distribution in the southeast and low distribution in the northwest;(2)the spatial dependence of agricultural carbon emissions showed a four-stage trend of fluctuating down-continuing up-plummeting-fluctuating up again,and the spatial heterogeneity was dominated by low-low agglomeration,followed by high-low agglomeration;(3)there was an inverted U curve relationship between the level of agricultural economic development and agricultural carbon emissions.The increase in the level of agricultural mechanization and urbanization rate significantly reduced agricultural carbon emissions.The opposite was true for the financial support for agriculture,the income level of rural residents and the structure of the agricultural industry;(4)in terms of spatial spillover effects,the increase in the level of agricultural development in neighbor counties first increased and then decreased agricultural carbon emissions in Henan Province.The mechanization level and urbanization rate of neighbor counties reduced agricultural carbon emissions in Henan Province,and the opposite was true for the income level of rural residents and the scale utilization of agricultural land.展开更多
Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and int...Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and intermediate principal stress σ_(2) tests on sandstone to simulate the effect of mining stress in actual underground engineering.The influences of each principal stress cycle on the mechanical properties,acoustic emission(AE)characteristics,and fracture characteristics of sandstone were analyzed.The damage characteristics of sandstone under true triaxial cyclic loading were studied.Furthermore,the damage constitutive model of rock mass under true triaxial cyclic loading was established based on AE cumulative ringing count.The quantitative investigation was conducted on cumulative-damage changes in circulating sandstone,which elucidated the mechanism of damage deterioration in sandstone subjected to true triaxial cyclic loading.The results show that the influence of the graded cycleσ_(1) on limit maximum principal strain ɛ_(1max) and limit minimum principal strainɛ_(3max) was significantly greater than that of the limit intermediate principal strain ɛ_(2max).Graded cycleσ_(2) had a greater impact onɛ_(2max) and a smaller impact onɛ_(3max).The elasticity modulus of sandstone decreased exponentially with the increased cyclic load amplitude,while the Poisson ratio increased linearly.b of AE showed a trend of increasing,decreasing,slightly fluctuating,and finally decreasing during cyclingσ_(1).b showed a trend of slight fluctuation,large fluctuation,and finally increase during cyclingσ_(2).Sandstone specimens experienced mainly tensile failure,tensile-shear composite failure,and mainly shear failure with increased initialσ_(2) orσ_(3).This was determined by analyzing the rise angle-average frequency of the AE parameter,corresponding to the rock specimens from splitting failure to shear failure.Besides,the mechanical damage behavior of sandstone under true triaxial cyclic loading could be well described by the established constitutive model.At the same time,it was found that the sandstone damage variable decreased with increasedσ_(2) during cyclingσ_(1).The damage variable decreased first and then increased with increasedσ_(3) during cyclingσ_(2).展开更多
During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is ampl...During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is amplified.However,research on the mechanical response mechanisms of surrounding rock mass under such conditions remains inadequate.This study utilized acoustic emission(AE)and resistivity testing to monitor rock fracture changes,revealing the rock’s damage state and characterizing the damage evolution process during uniaxial cyclic loading and unloading.First,a damage variable equation was established based on AE and resistivity parameters,leading to the derivation of a corresponding damage constitutive equation.Uniaxial cyclic loading and unloading tests were then conducted on sandstone samples with varying water contents,continuously monitoring AE signals and resistivity,along with computed tomography scans before and after failure.The predictions from the damage constitutive equation were compared with experimental results.This comparison shows that the proposed damage variable equation effectively characterizes the damage evolution of sandstone during loading and unloading,and that the constitutive equation closely fits the experimental data.This study provides a theoretical basis for monitoring and assessing the responses of surrounding rock mass during underground excavation.展开更多
A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indi...A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indicated that the pre-reduction sintering process(PSP)can effectively remove 58.02%of K and 30.68%of Na from raw mixtures and improve yield and tumbler index to 74.40%and 68.69%,respectively.Moreover,PSP was conducive to reducing NO_(x) and SO_(2)emissions and simultaneously increasing CO content in flue gas.Circulating CO-containing flue gas to sintering bed effectively recycled CO and further improved K and Na removal ratio to 74.11%and 32.92%,respectively.Microstructural analysis revealed that the pre-reduced sinter mainly consisted of magnetite,wustite and a small quantity of metallic iron,and very few silicate glass phase was also formed.This process can simultaneously realize alkali metal elements removal as well as flue gas emission reduction from the integrated ironmaking process.展开更多
遥感卫星的多光谱数据应用于找矿已取得显著成效,2004年7月中国卫星地面站开始提供ASTER(Advanced Space-borne Thermal Emission and Reflection Radiometer,高级星载热发射反照辐射计)数据,因涵盖波长范围宽[VNIR(Visible and Near In...遥感卫星的多光谱数据应用于找矿已取得显著成效,2004年7月中国卫星地面站开始提供ASTER(Advanced Space-borne Thermal Emission and Reflection Radiometer,高级星载热发射反照辐射计)数据,因涵盖波长范围宽[VNIR(Visible and Near Infra-red)、SWIR(Short wave-length Infra-red)、TIR(Thermal Infra-red)]、波段多(14个波段)、性价比合理等因素,ASTER数据的研究迅速发展。长久以来,对覆盖区进行蚀变遥感异常信息提取一直是遥感找矿的关注点之一。笔者等利用ASTER数据对浅覆盖区——包古图斑岩铜矿的Ⅱ号、Ⅴ号斑岩体进行蚀变遥感异常提取,提取的蚀变异常与野外地质情况吻合性好。分别提取了光谱特征谱带差异明显的2组蚀变矿物的异常信息:第一组是蒙脱石、埃洛石、伊利石与绢云母;第二组是方解石、黑云母与绿泥石。提出了需要进一步工作的异常靶区。展开更多
Flue gas of emission source and ambient air samples were collected and analyzed.Dioxins concentrations in flue gas and air samples ranged from 0.56 to 1.90 ngI-TEQ/m3 with average of 1.30 ngI-TEQ/m3 and from 0.11 to 0...Flue gas of emission source and ambient air samples were collected and analyzed.Dioxins concentrations in flue gas and air samples ranged from 0.56 to 1.90 ngI-TEQ/m3 with average of 1.30 ngI-TEQ/m3 and from 0.11 to 0.36 pgI-TEQ/m3 with average of 0.20 pgI-TEQ/m3,respectively.Dioxins congener profiles were compared using three methods and potential relationship of the two types of samples were discussed.展开更多
文摘The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.
基金Project(2009K06_03) supported by the Scientific and Technological Program of Shaanxi Province,China
文摘Infrared emissivity was studied in Zno.99Mo.olO (M is Mn, Fe or Ni) and Znl_xCoxO (x=0.01, 0.02, 0.03 and 0.04) powders synthesized by solid-state reaction at various temperatures. XRD patterns confirm the wurtzite structure of the prepared samples. No peaks of other phases arising from impurities are detected in Mn- and Co-doped ZnO, hut the peaks of ZnFe204 and NiO are observed in Zno.99Feo.010 and Zno.99Nio.o10. The SEM observations indicate that with larger grain sizes than those of Zn0.99Feo.010 and Zno.99Ni0.010, Co-doped ZnO exhibits smooth grain surfaces. The infrared absorption spectra show that infrared absorptions related to oxygen in Zn0.99M0.010 are much stronger than those in Co-doped ZnO. Co ions are dissolved into the ZnO lattice with Co2+ state from XPS spectra analysis. The infrared emissivity results imply that the emissivity of Zno.99Ni0.010 is the highest (0.829) and that of Zno.99C00.010 is the lowest (0.784) at 1 200 ℃. The emissivity of Zno.99Co0.010 decreases to the minimum (0.752) at 1 150 ℃ and then increases with growing calcination temperature. As the Co doping content grows, the emissivity of Co-doped ZnO calcined at 1 200 ℃ falls to 0.758 in the molar fraction of 3% and then ascends.
基金supported by the National Natural Science Foundation of China (Grant Nos.52276185,52276189 and 51976057)the Fundamental Research Funds for the Central Universities (Grant No.2021MS126)+1 种基金the Natural Science Foundation of Jiangsu Province (Grant No.BK20231209)the Proof-of-Concept Project of Zhongguancun Open Laboratory (Grant No.20220981113)。
文摘Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6.
文摘Malignant tumours always threaten human health.For tumour diagnosis,positron emission tomography(PET)is the most sensitive and advanced imaging technique by radiotracers,such as radioactive^(18)F,^(11)C,^(64)Cu,^(68)Ga,and^(89)Zr.Among the radiotracers,the radioactive^(18)F-labelled chemical agent as PET probes plays a predominant role in monitoring,detecting,treating,and predicting tumours due to its perfect half-life.In this paper,the^(18)F-labelled chemical materials as PET probes are systematically summarized.First,we introduce various radionuclides of PET and elaborate on the mechanism of PET imaging.It highlights the^(18)F-labelled chemical agents used as PET probes,including[^(18)F]-2-deoxy-2-[^(18)F]fluoro-D-glucose([^(18)F]-FDG),^(18)F-labelled amino acids,^(18)F-labelled nucleic acids,^(18)F-labelled receptors,^(18)F-labelled reporter genes,and^(18)F-labelled hypoxia agents.In addition,some PET probes with metal as a supplementary element are introduced briefly.Meanwhile,the^(18)F-labelled nanoparticles for the PET probe and the multi-modality imaging probe are summarized in detail.The approach and strategies for the fabrication of^(18)F-labelled PET probes are also described briefly.The future development of the PET probe is also prospected.The development and application of^(18)F-labelled PET probes will expand our knowledge and shed light on the diagnosis and theranostics of tumours.
基金Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province of China(BA2023020)。
文摘As an essential candidate for environment-friendly luminescent quantum dots(QDs),CuInS-based QDs have attracted more attention in recent years.However,several drawbacks still hamper their industrial applications,such as lower photoluminescence quantum yield(PLQY),complex synthetic pathways,uncontrollable emission spectra,and insufficient photostability.In this study,CuInZnS@ZnS core/shell QDs was prepared via a one-pot/three-step synthetic scheme with accurate and tunable control of PL spectra.Then their ensemble spectroscopic properties during nucleation formation,alloying,and ZnS shell growth processes were systematically investigated.PL peaks of these QDs can be precisely manipulated from 530 to 850 nm by controlling the stoichiometric ratio of Cu/In,Zn^(2+)doping and ZnS shell growth.In particular,CuInZnS@ZnS QDs possess a significantly long emission lifetime(up to 750 ns),high PLQY(up to 85%),and excellent crystallinity.Their spectroscopic evolution is well validated by Cu-deficient related intragap emission model.By controlling the stoichiometric ratio of Cu/In,two distinct Cu-deficient related emission pathways are established based on the differing oxidation states of Cu defects.Therefore,this work provides deeper insights for fabricating high luminescent ternary or quaternary-alloyed QDs.
文摘Photoluminescence(PL)is one of the most important properties of metal nanoclusters(NCs).Achieving effi⁃cient white light emission in metal NCs with a precise structures is important for practical applications but remains a great challenge.Here,we report the efficient white emission from Au_(10) NCs by elaborately deploying the surface chemistry engi⁃neering strategy.Specifically,the bis-aldehyde ligands of 4-hydroxyisophthalaldehyde(HOA)are decorated on the surface of Au_(10)(SG)_(10) NCs(glutathione denoted as SG)through the cross-linking reaction of imine bonds(-CH==N-).The combination of 477 nm blue emission from HOA ligands and 620 nm orange-yellow emission from Au_(10)(SG)_(10) NCs generates white-light emission in HOA-Au_(10)(SG)_(10) NCs in the solvent mixture of ethanol and water.More importantly,dynamic color tuning from blue light to yellow light is achieved by controlling the volume fraction of ethanol in the solvent mixture.In addi⁃tion,the as-formed imine bonds significantly improve the structural rigidity of HOA-Au_(10)(SG)_(10) NCs,resulting in the 51.2%absolute photoluminescence quantum yield(PLQY)of white emission.The present study exemplifies the paradigm to control the emission color and improve the PLQY of metal NCs through rational surface chemistry engineering.
基金supported by the National Natural Science Foundation of China(52106276 and 52130601).
文摘Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.
基金Project(52374150)supported by the National Natural Science Foundation of ChinaProject(2021RC3007)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied angle shear tests(VASTs)were designed using acoustic emission(AE)detection and digital image correlation technologies to evaluate the mechanical behaviors of typical red sandstone.AE signal parameters revealed differences in the number and intensity of microcracks within the sandstone,with a test angle(α)of 50°identified as a significant turning point for its failure properties.Whenα³50°,microcrack activity intensified,and the proportion of tensile cracks increased.Asαincreased,the number of fragments generated after failure decreased,fragment sizes became smaller,and the crack network simplified.Cracks extended from the two cut slits at the ends of the rock,gradually penetrating along the centerline towards the central location,as observed from the evolution of the strain concentration field.Both cohesion(c)and internal friction angle(ϕ)measured in VAST were lower than those measured under conventional triaxial compression.
基金Projects(52274143,51874284)supported by the National Natural Science Foundation of China。
文摘The cemented-gangue-fly-ash backfill(CGFB)prepared from coal-based solid waste materials commonly exhibits high brittleness,leading to an increased susceptibility to cracking.Uniaxial compressive strength(UCS),acoustic emission(AE),and scanning electron microscopy tests were conducted on CGFB samples with recycled steel fiber(RSF)contents of 0,0.5%,1.0%and 1.5%to assess the mechanical properties and damage evolution law of the CGFB.The research findings indicate that:1)When RSF contents were 0.5%,1%,and 1.5%,respectively,compared to samples without RSF,the UCS decreased by 3.86%,6.76%,and 15.59%,while toughness increased by 69%,98%,and 123%;2)The addition of RSFs reduced the post-peak stress energy activity and increased the fluctuations in the b-value;3)As the RSF dosage increased from 0 to 1.5%,the per unit dissipated strain energy increased from 5.84 to 21.51,and the post-peak released energy increased from 15.07 to 33.76,indicating that the external energy required for the CGFB sample to fail increased;4)The hydration products,such as C-S-H gel,ettringite,and micro-particle materials,were embedded in the damaged areas of the RSFs,increasing the frictional force at the interface between the RSF and CGFB matrix.The shape variability of the RSFs caused interlocking between the RSFs and the matrix.Both mechanisms strengthened the bridging effect of the RSFs in the CGFB,thereby improving the damage resistance capability of CGFB.The excellent damage resistance occurred at an RSF content of 0.5%;thus,this content is recommended for engineering applications.
基金Projects(2024ZD1003903,2024ZD1003906)supported by the National Science and Technology Major ProjectProjects(U22A20166,52304097)supported by the National Natural Science Foundation of China+1 种基金Project(DUSE202301)supported by the Open Foundation of Key Laboratory of Deep Earth Science and Engineering(Sichuan University),Ministry of Education,ChinaProjects(2025A1515010049,2023A1515012654)supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘Analyzing the fatigue damage characteristics of hot dry rock(HDR)affected by seawater thermal shock cycles is required for the efficient exploitation of HDR and the conservation of freshwater resources.Mechanical and acoustic emission(AE)monitoring tests were conducted during the triaxial compression of HDR at different confining pressures,temperatures,and numbers of seawater thermal shocks to investigate the seawater damage of HDR.The test results indicated an increase in the cumulative AE counts with increasing temperature and number of seawater thermal shocks,and a decrease in AE counts with increasing confining pressure.The effect of the number of seawater thermal shocks was significant.The AE counts were 276% higher at 15 than at 0 seawater thermal shocks.The b-value increased with the number of thermal shocks and stabilized after 5 shocks.Most of the damage was small fractures,which reduced the rock’s damage resistance.The AE time series under HDR triaxial compression exhibited multifractal features.High energy AE events dominated the damage mechanism of HDR,indicating shear damage to the HDR.Therefore,this study can provide a reference for seawater as a heat transfer fluid in the design of geothermal energy resource extraction.
基金Project(2023YFC2907400)by the National Key Research and Development Program of China-2023 Key Special ProjectProject(51974043)supported by the National Natural Science Foundation of China+2 种基金Project(SKLCRKF1908)supported by the Open Fund of the State Key Laboratory of Coal Resources in Western China,Xi’an University of Science and Technology,ChinaProject(2023JJ10072)suupported by the Hunan Provincial Natural Science Foundation for Distinguished Young ScholarsProject(2022RC1173)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pressures(5,10 and 15 MPa)and numbers of impacts(1,5,10 and 15 impacts).Then,uniaxial compression tests were undertaken on the pre-damaged granite to study the evolution of stress thresholds using the crack volume strain method and acoustic emission method.The crack damage stresses determined by the two methods were compared.Additionally,based on the rise time amplitude and average frequency,the evolution law of microcracks inside rock specimens was revealed,and an improved acoustic emission method was proposed.The results indicated that as the number of impacts increased,the crack closure stress,crack damage stress,and peak stress of granite specimens initially rose and then declined,while they continuously increased with the confining pressure.The proportion of shear cracks first declined and then rose with greater number of impacts and decreased with higher confining pressure,and that of tensile cracks showed the opposite trend.The improved acoustic emission method was more accurate in identifying the crack damage stress.
基金Supported by the Humanities and Social Sciences Planning Program of the Ministry of Education(23YJA790027)。
文摘Exploring the effective and efficient path of agricultural carbon emission reduction in Henan Province is of great significance to optimizing the strategic layout of China's agricultural emission reduction and carbon sequestration.Accordingly,the agricultural carbon emissions of each county were measured scientifically and then the spatial measurement model was utilized to clarify the spatial and temporal evolution trend and spatial effect mechanism of agricultural carbon emissions based on the county data of Henan Province from 2010 to 2020.The results showed that:(1)in 2020,the total agricultural carbon emissions were 134.7274 million tons,with the high distribution in the southeast and low distribution in the northwest;(2)the spatial dependence of agricultural carbon emissions showed a four-stage trend of fluctuating down-continuing up-plummeting-fluctuating up again,and the spatial heterogeneity was dominated by low-low agglomeration,followed by high-low agglomeration;(3)there was an inverted U curve relationship between the level of agricultural economic development and agricultural carbon emissions.The increase in the level of agricultural mechanization and urbanization rate significantly reduced agricultural carbon emissions.The opposite was true for the financial support for agriculture,the income level of rural residents and the structure of the agricultural industry;(4)in terms of spatial spillover effects,the increase in the level of agricultural development in neighbor counties first increased and then decreased agricultural carbon emissions in Henan Province.The mechanization level and urbanization rate of neighbor counties reduced agricultural carbon emissions in Henan Province,and the opposite was true for the income level of rural residents and the scale utilization of agricultural land.
基金Project(2022m07020007)supported by the Key Research and Development Projects of Anhui Province,ChinaProjects(52174102,52074006,51404011,51874002,51974009)supported by the National Natural Science Foundation of China+1 种基金Project(2024cx1017)supported by the Graduate Innovation Fund of Anhui University of Science and Technology,ChinaProject(2024AH040067)supported by the Natural Science Research Project of Anhui Educational Committee,China。
文摘Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and intermediate principal stress σ_(2) tests on sandstone to simulate the effect of mining stress in actual underground engineering.The influences of each principal stress cycle on the mechanical properties,acoustic emission(AE)characteristics,and fracture characteristics of sandstone were analyzed.The damage characteristics of sandstone under true triaxial cyclic loading were studied.Furthermore,the damage constitutive model of rock mass under true triaxial cyclic loading was established based on AE cumulative ringing count.The quantitative investigation was conducted on cumulative-damage changes in circulating sandstone,which elucidated the mechanism of damage deterioration in sandstone subjected to true triaxial cyclic loading.The results show that the influence of the graded cycleσ_(1) on limit maximum principal strain ɛ_(1max) and limit minimum principal strainɛ_(3max) was significantly greater than that of the limit intermediate principal strain ɛ_(2max).Graded cycleσ_(2) had a greater impact onɛ_(2max) and a smaller impact onɛ_(3max).The elasticity modulus of sandstone decreased exponentially with the increased cyclic load amplitude,while the Poisson ratio increased linearly.b of AE showed a trend of increasing,decreasing,slightly fluctuating,and finally decreasing during cyclingσ_(1).b showed a trend of slight fluctuation,large fluctuation,and finally increase during cyclingσ_(2).Sandstone specimens experienced mainly tensile failure,tensile-shear composite failure,and mainly shear failure with increased initialσ_(2) orσ_(3).This was determined by analyzing the rise angle-average frequency of the AE parameter,corresponding to the rock specimens from splitting failure to shear failure.Besides,the mechanical damage behavior of sandstone under true triaxial cyclic loading could be well described by the established constitutive model.At the same time,it was found that the sandstone damage variable decreased with increasedσ_(2) during cyclingσ_(1).The damage variable decreased first and then increased with increasedσ_(3) during cyclingσ_(2).
基金Projects(52279117,52325905)supported by the National Natural Science Foundation of ChinaProject(DJ-HXGG-2023-16)supported by the Technology Project of PowerChinaProject(SKLGME-JBGS2401)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is amplified.However,research on the mechanical response mechanisms of surrounding rock mass under such conditions remains inadequate.This study utilized acoustic emission(AE)and resistivity testing to monitor rock fracture changes,revealing the rock’s damage state and characterizing the damage evolution process during uniaxial cyclic loading and unloading.First,a damage variable equation was established based on AE and resistivity parameters,leading to the derivation of a corresponding damage constitutive equation.Uniaxial cyclic loading and unloading tests were then conducted on sandstone samples with varying water contents,continuously monitoring AE signals and resistivity,along with computed tomography scans before and after failure.The predictions from the damage constitutive equation were compared with experimental results.This comparison shows that the proposed damage variable equation effectively characterizes the damage evolution of sandstone during loading and unloading,and that the constitutive equation closely fits the experimental data.This study provides a theoretical basis for monitoring and assessing the responses of surrounding rock mass during underground excavation.
基金Project(52274290)supported by the National Natural Science Foundation of ChinaProject(72088101)supported by the Basic Science Center Project for National Natural Science Foundation of China。
文摘A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indicated that the pre-reduction sintering process(PSP)can effectively remove 58.02%of K and 30.68%of Na from raw mixtures and improve yield and tumbler index to 74.40%and 68.69%,respectively.Moreover,PSP was conducive to reducing NO_(x) and SO_(2)emissions and simultaneously increasing CO content in flue gas.Circulating CO-containing flue gas to sintering bed effectively recycled CO and further improved K and Na removal ratio to 74.11%and 32.92%,respectively.Microstructural analysis revealed that the pre-reduced sinter mainly consisted of magnetite,wustite and a small quantity of metallic iron,and very few silicate glass phase was also formed.This process can simultaneously realize alkali metal elements removal as well as flue gas emission reduction from the integrated ironmaking process.
文摘遥感卫星的多光谱数据应用于找矿已取得显著成效,2004年7月中国卫星地面站开始提供ASTER(Advanced Space-borne Thermal Emission and Reflection Radiometer,高级星载热发射反照辐射计)数据,因涵盖波长范围宽[VNIR(Visible and Near Infra-red)、SWIR(Short wave-length Infra-red)、TIR(Thermal Infra-red)]、波段多(14个波段)、性价比合理等因素,ASTER数据的研究迅速发展。长久以来,对覆盖区进行蚀变遥感异常信息提取一直是遥感找矿的关注点之一。笔者等利用ASTER数据对浅覆盖区——包古图斑岩铜矿的Ⅱ号、Ⅴ号斑岩体进行蚀变遥感异常提取,提取的蚀变异常与野外地质情况吻合性好。分别提取了光谱特征谱带差异明显的2组蚀变矿物的异常信息:第一组是蒙脱石、埃洛石、伊利石与绢云母;第二组是方解石、黑云母与绿泥石。提出了需要进一步工作的异常靶区。
文摘Flue gas of emission source and ambient air samples were collected and analyzed.Dioxins concentrations in flue gas and air samples ranged from 0.56 to 1.90 ngI-TEQ/m3 with average of 1.30 ngI-TEQ/m3 and from 0.11 to 0.36 pgI-TEQ/m3 with average of 0.20 pgI-TEQ/m3,respectively.Dioxins congener profiles were compared using three methods and potential relationship of the two types of samples were discussed.