This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China...This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development.展开更多
As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the clas...As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the classic instantaneous traffic emission model and the limited deceleration capacity microscopic traffic flow model with slow-to-start rules, this paper has investigated the impact of speed humps on traffic flow and the instantaneous emissions of vehicle pollutants in a single lane situation. The numerical simulation results have shown that speed humps have significant effects on traffic flow and traffic emissions. In a free-flow region, the increase of speed humps leads to the continuous rise of CO_(2), NO_(X) and PM emissions. Within some density ranges, one finds that these pollutant emissions can evolve into some higher values under some random seeds. Under other random seeds, they can evolve into some lower values. In a wide moving jam region, the emission values of these pollutants sometimes appear as continuous or intermittent phenomenon. Compared to the refined Na Sch model, the present model has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher volatile organic components(VOC) emissions. Compared to the limited deceleration capacity model without slow-to-start rules, the present model also has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher VOC emissions in a wide moving jam region. These results can also be confirmed or explained by the statistical values of vehicle velocity and acceleration.展开更多
This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissio...This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissions of passenger cars.The dynamic behaviors of these two types of vehicles are described using cellular automata(CA)models under open boundary conditions.Numerical simulations are carried out to obtain the phase diagrams of the bus system and the trajectories of buses and passenger cars before and after the implementation of the bus holding strategy under different probabilities of passenger cars entering a two-lane mixed traffic system.Then,we analyze the flow rate,satisfaction rate,and pollutant emission rates of passenger cars together with the performance of a mixed traffic system.The results show that the bus holding strategy can effectively alleviate bus bunching,whereas it has no significant impact on the flow rate and pollutant emission rates of passenger cars;the flow rate,satisfaction rate,and pollutant emission rates of passenger cars for either the traffic system or for each lane are influenced by the bus departure interval and the number of passengers arriving at bus stops.展开更多
Investing in projects that support environmental benefits,such as tree harvesting,has the potential to reduce air pollution levels in the atmosphere in the future.However,this kind of investment may increase the curre...Investing in projects that support environmental benefits,such as tree harvesting,has the potential to reduce air pollution levels in the atmosphere in the future.However,this kind of investment may increase the current level of emissions.Therefore,it is necessary to estimate how much the policy affects the current level of CO_(2) emissions.This makes sure the policy doesn’t increase the level of CO_(2) emis-sions.This study aims to analyze the effect of the One Bil-lion Trees program on CO_(2) emissions in New Zealand by employing the 2020 input–output table analysis.This inves-tigation examines the direct and indirect effects of policy on both the demand and supply sides across six regions of New Zealand.The results of this study for the first year of plantation suggest that the policy increases the level of CO_(2) emissions in all regions,especially in the Waikato region.The direct and indirect impact of the policy leads to 64 kt of CO_(2) emissions on the demand side and 270 kt of CO_(2) emis-sions on the supply side.These lead to 0.19 and 0.74%of total CO_(2) emissions being attributed to investment shocks.Continuing the policy is recommended,as it has a low effect on CO_(2) emissions.However,it is crucial to prioritize the use of low-carbon machinery that uses fossil fuels during the plantation process.展开更多
How to achieve the objective of reducing CO2 emissions has been an academic focus in China recently. The factors influencing CO2 emissions are the vital issue to accomplish the arduous target. Firstly, three influenti...How to achieve the objective of reducing CO2 emissions has been an academic focus in China recently. The factors influencing CO2 emissions are the vital issue to accomplish the arduous target. Firstly, three influential factors, the energy consumption, the proportion of tertiary industry in gross domestic product (GDP), and the degree of dependence on foreign trade, are carefully selected, since all of them have closer grey relation with China's COz emissions compared with others when the grey relational analysis (GRA) method is applied. The study highlights co-integration relation of these four variables using the co-integration analysis method. And then a long-term co-integration equation and a short-term error correction model of China's CO2 emissions are devel- oped. Finally, the comparison is exerted between the forecast value and the actual value of China's CO2 emissions based on error correction model. The results and the relevant statistics tests show that the pro- posed model has better explanation capability and credibility.展开更多
Emissions of exhaust gases and particulate matter from a dual fuel marine engine using methanol as fuel with marine gasoil as pilot fuel have been examined for a ferry during operation.The emission factor for nitrogen...Emissions of exhaust gases and particulate matter from a dual fuel marine engine using methanol as fuel with marine gasoil as pilot fuel have been examined for a ferry during operation.The emission factor for nitrogen oxides is lower than what is typically found for marine gasoil but does not reach the tier III limit.The emissions of particulate matter are significantly lower than for fuel oils and similar to what is found for LNG engines.The main part of the particles can be found in the ultrafine range with the peak being at around 18 nm.About 93%of the particles are evaporated and absorbed when using a thermodenuder,and thus a large majority of the particles are volatile.Methanol is a potential future marine fuel that will reduce emissions of air pollutants and can be made as a biofuel to meet emission targets for greenhouse gases.展开更多
Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemente...Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions.From that point,an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used.The variations of SOx emissions are computed in g/k W·h and in parts per million(ppm)as functions of the optimized parameters:brake specific fuel consumption and the amount of air-fuel ratio respectively.Then,a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load.These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.展开更多
The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seapor...The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seaports have suffered from a central problem,which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed.Many ports have taken the necessary precautions to overcome this problem,while others still suffer due to the presence of technical and financial constraints.In this paper,the barriers,interconnection standards,rules,regulations,power sources,and economic and environmental analysis related to ships,shore-side power were studied in efforts to find a solution to overcome his problem.As a case study,this paper investigates the practicability,costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga,Egypt.The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving.Moreover,environmentally,it could achieve an annual reduction in exhaust gas emissions of CO2,CO,NOx,P.M,and SO2by 276,2.32,18.87,0.825 and 3.84 tons,respectively.展开更多
Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate ...Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%.展开更多
To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and d...To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and diffusion of harmful substances from a trackless rubber-wheel diesel vehicle.A computational fluid dynamics(CFD)model of the diffusion of harmful emissions was hence established and verified.From the perspective of risk analysis,the diffusion behavior and distribution of hazardous substances emitted by the diesel vehicle were studied under 4 different conditions;moreover,we identified areas characterized by hazardous levels of emissions.When the vehicle idled upwind in the roadway,high-risk areas formed behind and to the right of the vehicle:particularly high concentrations of pollutants were measured near the rear floor of the vehicle and within 5 m behind the vehicle.When the vehicle idled downwind,high-risk areas formed in front of it:particularly high concentrations of pollutants were measured near the floor and within 5 m from the front of the vehicle.In the above cases,the driver would not breathe highly polluted air and would be relatively safe.When the vehicle idled into the chamber,however,high-risk areas formed on both sides of the vehicle and near the upper roof.Forward entry of the vehicle caused a greater increase in the concentration of pollutants in the chamber and in the driver’s breathing zone compared with reverse entry.展开更多
The data collected from haul truck payload management systems at various surface mines show that the payload variance is significant and must be considered in analysing the mine productivity, diesel energy consumption...The data collected from haul truck payload management systems at various surface mines show that the payload variance is significant and must be considered in analysing the mine productivity, diesel energy consumption, greenhouse gas emissions and associated costs. The aim of this study is to determine the energy and cost saving opportunities for truck haulage operations associated with the payload variance in surface mines. The results indicate that there is a non-linear relationship between the payload variance and the fuel consumption, greenhouse gas emissions and associated costs. A correlation model, which is independent of haul road conditions, has been developed between the payload variance and the cost saving using the data from an Australian surface coal mine. The results of analysis for this particular mine show that a significant saving of fuel and greenhouse gas emissions costs is possible if the standard deviation of payload is reduced from the maximum to minimum value.展开更多
Underground fires are characterized by smouldering combustion with a slow rate of spread rate and without flames.Although smouldering combustion releases large amounts of gaseous pollutants,it is difficult to discover...Underground fires are characterized by smouldering combustion with a slow rate of spread rate and without flames.Although smouldering combustion releases large amounts of gaseous pollutants,it is difficult to discover by today's forest fire monitoring technologies.Carbon monoxide(CO),nitrogen oxides(NO_(x))and sulfur dioxide(SO_(2))were identified as high concentration marker gases of smouldering combustion-easily-be monitored.According to a two-way ANOVA,combustion time had a significant impact on CO and NO_(x) emissions;smoldering-depth also had a significant impact on NO_(x) emissions but not on CO emissions.Gas emission equations were established by multiple linear regression,C_(co)=156.989-16.626 t and C_(NOx)=3.637-0.252 t-0.039 h.展开更多
This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,In...This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,Indiset 620 combustion analyzer made by AVL,was used to make a real-time survey on the cylinder pressure,the fuel ignition moment,and establish a relation between the change trend of temperature in cylinder and the crank angle.For the engine burning heavy oil and heavy oil mixed with additives,combustion analysis software Indicom and Concerto were used to analyze its combustion process and emission conditions.Experimental investigation shows that nano-sized complex oxide can improve the performance of diesel engine fueled with heavy oil,and reduce the emission of pollutants like NOx and CO,comparing it with the pure heavy oil.According to the consequences of this experiment,the additives improve the overall performance in the use of heavy oil.展开更多
The regulated pollutants (CO,HC and NOx) and unregulated pollutants (volatile organic compounds and carbonyl compounds),emitted from a dual fuel vehicle fueled with gasoline and E10 fuel,are measured under a trans...The regulated pollutants (CO,HC and NOx) and unregulated pollutants (volatile organic compounds and carbonyl compounds),emitted from a dual fuel vehicle fueled with gasoline and E10 fuel,are measured under a transient cycle and steady modes.The impacts of a three-way catalyst (TWC) are investigated for the two types of fuels.The measured results show that NOx and acetaldehyde emitted from the E10-fueled car are much more than that from the gasoline-fueled car under the same modes.On the basis of maximum incremental reactivity (MIR) factors and emissions of organic gases,the ozone specific reactivity of the tailpipe gases are evaluated.展开更多
There is a worldwide consensus that excessive anthropogenic carbon dioxide emissions will lead to global warming and other environmental problems.Supports from regulations and policies have gradually implemented in th...There is a worldwide consensus that excessive anthropogenic carbon dioxide emissions will lead to global warming and other environmental problems.Supports from regulations and policies have gradually implemented in this area.As one of the most discussed policies,the carbon emissions trading schemes(CETS)has an advantage in its price-oriented and cost-saving characteristics.In this paper,we analyze and assess the CETS effect from static and dynamic perspectives by applying provincial panel data covering a period ranging from 2004 to 2017.The CETS policy has a significant constraining effect on both carbon emissions and primary energy consumption.Compared to the other two uncertainties,namely the energy price uncertainty and the technology uncertainty,the carbon permit price uncertainty has a relatively smooth impact on the economy,which is being pursued consistently by the policymakers.展开更多
The regulated gaseous emissions from 2 China-V compressed natural gas(CNG)buses and 2 China-V diesel buses were investigated using a portable emissions measurement system(PEMS)under real road driving conditions.Compar...The regulated gaseous emissions from 2 China-V compressed natural gas(CNG)buses and 2 China-V diesel buses were investigated using a portable emissions measurement system(PEMS)under real road driving conditions.Compared to diesel buses,CNG buses emit less NOx pollutants,but more HC and CO pollutants based on the test results obtained in this paper.In order to evaluate the pollutant emission status of CNG buses in Beijing,an instantaneous emission model as a function of vehicle speed and vehicle specific power(VSP)was developed and validated based on emission data taken from one CNG bus.The input of the instantaneous emission model consists of driving cycle,vehicle parameters,road conditions,ambient conditions and accessory use,all of which were used to calculate the instantaneous vehicle specific power(VSP).For the core model,a group of pollutant emission maps represented as functions of vehicle speed and VSP were used to calculate the second by second emission rates.Finally,the instantaneous emission rates,emission factors and fuel consumption over the selected driving cycle could be obtained as the model outputs.The predicted results for the emissions and fuel consumption of the CNG bus were very close to the tested emission data.The prediction errors for emission factors and fuel consumption varied in the range of-1.6 2%to-5.8%.展开更多
Forests are exposed to changing climatic conditions reflected by increasing drought and heat waves that increase the risk of wildfire ignition and spread.Climatic variables such as rain and wind as well as vegetation ...Forests are exposed to changing climatic conditions reflected by increasing drought and heat waves that increase the risk of wildfire ignition and spread.Climatic variables such as rain and wind as well as vegetation structure,land configuration and forest management practices are all factors that determine the burning potential of wildfires.The assessment of emissions released by vegetation combustion is essential for determining greenhouse gases and air pollutants.The estimation of wildfire-related emissions depends on factors such as the type and fraction of fuel(i.e.,live biomass,ground litter,dead wood)consumed by the fire in a given area,termed the burning efficiency.Most approaches estimate live burning efficiency from optical remote sensing data.This study used a data-driven method to estimate live burning efficiency in a Mediterranean area.Burning severity estimations from Lands at imagery(dNBR),which relate to fuel consumption,and quantitative field data from three national forest inventory data were combined to establish the relationship between burning severity and live burning efficiency.Several proxies explored these relationships based on dNBR interval classes,as well as regres sion models.The correlation results between live burning efficiency and dNBR for conifers(R=0.63)and broad-leaved vegetation(R=0.95)indicated ways for improving emissions estimations.Median estimations by severity class(low,moderate-low,moderate-high,and high)are provided for conifers(0.44-0.81)and broad-leaves(0.64-0.86),and regression models for the live fraction of the tree canopy susceptible to burning(<2 cm,2-7 cm,>7 branches,and leaves).The live burning efficiency values by severity class were higher than previous studies.展开更多
Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which i...Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which is(002)-orientation growth and approximately perpendicular to Cd foil substrate, has been fabricated by the solvothermal method. In the temperature-dependent photoluminescence, from short wavelength to long wavelength, four peaks can be ascribed to the emissions from the bandgap, the transition from the holes being bound to the donors or the electrons being bound to the acceptors, the transition from Cd interstitials to Cd vacancies, and the transition from S vacancies to the valence band,respectively. In the photoluminescence of 10 K, the emission originated from the bandgap appears in the form of multiple peaks. Two stronger peaks and five weaker peaks can be observed. The energy differences of the adjacent peaks are close to 38 me V, which is ascribed to the LO phonon energy of Cd S. For the multiple peaks of bandgap emission, from low energy to high energy, the first, second, and third peaks are contributed to the third-order, second-order, and first-order phonon replica of the free exciton A, respectively;the fourth peak is originated from the free exciton A;the fifth peak is contributed to the first-order phonon replica of the excitons bound to neutral donors;the sixth and seventh peaks are originated from the excitons bound to neutral donors and the light polarization parallel to the c axis of hexagonal Cd S, respectively.展开更多
The studies and development of coal seam gas(CSG) have been conducted for more than 30 years in China, but few of China's CSG projects have achieved large-scale commercial success; faced with the boom of shale gas,...The studies and development of coal seam gas(CSG) have been conducted for more than 30 years in China, but few of China's CSG projects have achieved large-scale commercial success; faced with the boom of shale gas, some investors are beginning to lose patience and confidence in CSG. China currently faces the following question: Should the government continue to vigorously support the development of the CSG industry? To provide a reference for policy makers and investors, this paper calculates the EROI_(stnd)[a standardized energy return on investment(EROI) method], EROI_(ide)(the maximum theoretical EROI), EROI_(3,i)(EROI considering the energy investment in transport), and EROI_(3,1+e)(EROI with environmental inputs) of a single vertical CSG well in the Fanzhuang CSG project in the Qinshui Basin. The energy payback time(EPT) and the greenhouse gas(GHG) emissions of the CSG systems are also calculated. The results show that over a 15-year lifetime, EROI_(stnd), EROI_(ide), EROI_(3,1), and EROI_(3,1+e)are expected to deliver EROIs of approximately11:1, 20:1, 7:1, and 6:1, respectively. The EPT within different boundaries is no more than 2 years, and the life-cycle GHG emissions are approximately 18.8 million kg CO_2 equivalent. The relatively high EROI and short EPT indicate that the government should take more positive measures to promote the development of the CSG industry.展开更多
In this paper,the influence of aromatic content,one of main fuel properties,on diesel particulate emissions was studied at five steady-state operating conditions using a heavy-duty Perkins 4.236 engine.Detailed analys...In this paper,the influence of aromatic content,one of main fuel properties,on diesel particulate emissions was studied at five steady-state operating conditions using a heavy-duty Perkins 4.236 engine.Detailed analysis of the particulate showed the presence of biologically active polynuclear aromatic hydrocarbons(PAH) in high concentration.Unburnt PAH in liquid fuel are identified to be the dominant source of particulate PAH.Diesel particulates are also considered a potential health hazard because of the presence of PAH in the SOF of the particulates and some of these PAH are known to be carcinogenic.展开更多
文摘This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development.
基金funded by the National Natural Science Foundation of China (Grant No. 11875031)the key research projects of Natural Science of Anhui Provincial Colleges and Universities (Grant No. 2022AH050252)。
文摘As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the classic instantaneous traffic emission model and the limited deceleration capacity microscopic traffic flow model with slow-to-start rules, this paper has investigated the impact of speed humps on traffic flow and the instantaneous emissions of vehicle pollutants in a single lane situation. The numerical simulation results have shown that speed humps have significant effects on traffic flow and traffic emissions. In a free-flow region, the increase of speed humps leads to the continuous rise of CO_(2), NO_(X) and PM emissions. Within some density ranges, one finds that these pollutant emissions can evolve into some higher values under some random seeds. Under other random seeds, they can evolve into some lower values. In a wide moving jam region, the emission values of these pollutants sometimes appear as continuous or intermittent phenomenon. Compared to the refined Na Sch model, the present model has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher volatile organic components(VOC) emissions. Compared to the limited deceleration capacity model without slow-to-start rules, the present model also has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher VOC emissions in a wide moving jam region. These results can also be confirmed or explained by the statistical values of vehicle velocity and acceleration.
基金Project supported by the National Natural Science Foundation of China(Grant No.52172314)the Natural Science Foundation of Liaoning Province,China(Grant No.2022-MS-150)the Special Funding Project of Taishan Scholar Engineering.
文摘This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissions of passenger cars.The dynamic behaviors of these two types of vehicles are described using cellular automata(CA)models under open boundary conditions.Numerical simulations are carried out to obtain the phase diagrams of the bus system and the trajectories of buses and passenger cars before and after the implementation of the bus holding strategy under different probabilities of passenger cars entering a two-lane mixed traffic system.Then,we analyze the flow rate,satisfaction rate,and pollutant emission rates of passenger cars together with the performance of a mixed traffic system.The results show that the bus holding strategy can effectively alleviate bus bunching,whereas it has no significant impact on the flow rate and pollutant emission rates of passenger cars;the flow rate,satisfaction rate,and pollutant emission rates of passenger cars for either the traffic system or for each lane are influenced by the bus departure interval and the number of passengers arriving at bus stops.
基金Open Access funding enabled and organized by CAUL and its Member Institutions
文摘Investing in projects that support environmental benefits,such as tree harvesting,has the potential to reduce air pollution levels in the atmosphere in the future.However,this kind of investment may increase the current level of emissions.Therefore,it is necessary to estimate how much the policy affects the current level of CO_(2) emissions.This makes sure the policy doesn’t increase the level of CO_(2) emis-sions.This study aims to analyze the effect of the One Bil-lion Trees program on CO_(2) emissions in New Zealand by employing the 2020 input–output table analysis.This inves-tigation examines the direct and indirect effects of policy on both the demand and supply sides across six regions of New Zealand.The results of this study for the first year of plantation suggest that the policy increases the level of CO_(2) emissions in all regions,especially in the Waikato region.The direct and indirect impact of the policy leads to 64 kt of CO_(2) emissions on the demand side and 270 kt of CO_(2) emis-sions on the supply side.These lead to 0.19 and 0.74%of total CO_(2) emissions being attributed to investment shocks.Continuing the policy is recommended,as it has a low effect on CO_(2) emissions.However,it is crucial to prioritize the use of low-carbon machinery that uses fossil fuels during the plantation process.
基金Supported by the National Natural Science Foundation of China(41101569)the China Postdoctoral Science Foundation Funded Project(2011M500965)+5 种基金the Jiangsu Funds of Social Science(11EYC023)the Doctoral Discipline New Teachers Fund(20110095120002)the Jiangsu Postdoctoral Science Foundation Funded Project(1102088C)the Fundamental Research Funds for the Central Universities(JGJ110763)the Talent Introduction Funds of China University of Mining and Technologythe Sail Plan Funds for Young Teachers of China University of Mining and Technology~~
文摘How to achieve the objective of reducing CO2 emissions has been an academic focus in China recently. The factors influencing CO2 emissions are the vital issue to accomplish the arduous target. Firstly, three influential factors, the energy consumption, the proportion of tertiary industry in gross domestic product (GDP), and the degree of dependence on foreign trade, are carefully selected, since all of them have closer grey relation with China's COz emissions compared with others when the grey relational analysis (GRA) method is applied. The study highlights co-integration relation of these four variables using the co-integration analysis method. And then a long-term co-integration equation and a short-term error correction model of China's CO2 emissions are devel- oped. Finally, the comparison is exerted between the forecast value and the actual value of China's CO2 emissions based on error correction model. The results and the relevant statistics tests show that the pro- posed model has better explanation capability and credibility.
文摘Emissions of exhaust gases and particulate matter from a dual fuel marine engine using methanol as fuel with marine gasoil as pilot fuel have been examined for a ferry during operation.The emission factor for nitrogen oxides is lower than what is typically found for marine gasoil but does not reach the tier III limit.The emissions of particulate matter are significantly lower than for fuel oils and similar to what is found for LNG engines.The main part of the particles can be found in the ultrafine range with the peak being at around 18 nm.About 93%of the particles are evaporated and absorbed when using a thermodenuder,and thus a large majority of the particles are volatile.Methanol is a potential future marine fuel that will reduce emissions of air pollutants and can be made as a biofuel to meet emission targets for greenhouse gases.
基金performed within the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(CENTEC)financed by Portuguese Foundation for Science and Technology(Fundacao para a Ciência e Tecnologia(FCT)),under contract UID/Multi/00134/2013-LISBOA-01-0145-FEDER-007629。
文摘Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions.From that point,an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used.The variations of SOx emissions are computed in g/k W·h and in parts per million(ppm)as functions of the optimized parameters:brake specific fuel consumption and the amount of air-fuel ratio respectively.Then,a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load.These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.
文摘The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seaports have suffered from a central problem,which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed.Many ports have taken the necessary precautions to overcome this problem,while others still suffer due to the presence of technical and financial constraints.In this paper,the barriers,interconnection standards,rules,regulations,power sources,and economic and environmental analysis related to ships,shore-side power were studied in efforts to find a solution to overcome his problem.As a case study,this paper investigates the practicability,costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga,Egypt.The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving.Moreover,environmentally,it could achieve an annual reduction in exhaust gas emissions of CO2,CO,NOx,P.M,and SO2by 276,2.32,18.87,0.825 and 3.84 tons,respectively.
基金financial support by the Ministry of Science and Technology of China (Grant No.2018YFC1509006)the National Natural Science Foundation of China (Grant No.71874096)+1 种基金the Macao SAR Government Higher Education Fundthe Macao University of Science and Technology (Grant No.FRG-19-008-MSB)。
文摘Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%.
基金supported by the National Natural Science Foundation of China(Nos.52174191 and 51874191)the National Key R&D Program of China(No.2017YFC0805201)+1 种基金Qingchuang Science and Technology Project of Shandong Province University(No.2020KJD002)Taishan Scholars Project Special Funding(No.TS20190935).
文摘To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and diffusion of harmful substances from a trackless rubber-wheel diesel vehicle.A computational fluid dynamics(CFD)model of the diffusion of harmful emissions was hence established and verified.From the perspective of risk analysis,the diffusion behavior and distribution of hazardous substances emitted by the diesel vehicle were studied under 4 different conditions;moreover,we identified areas characterized by hazardous levels of emissions.When the vehicle idled upwind in the roadway,high-risk areas formed behind and to the right of the vehicle:particularly high concentrations of pollutants were measured near the rear floor of the vehicle and within 5 m behind the vehicle.When the vehicle idled downwind,high-risk areas formed in front of it:particularly high concentrations of pollutants were measured near the floor and within 5 m from the front of the vehicle.In the above cases,the driver would not breathe highly polluted air and would be relatively safe.When the vehicle idled into the chamber,however,high-risk areas formed on both sides of the vehicle and near the upper roof.Forward entry of the vehicle caused a greater increase in the concentration of pollutants in the chamber and in the driver’s breathing zone compared with reverse entry.
基金CRC Mining and the University of Queensland for their financial support for this study
文摘The data collected from haul truck payload management systems at various surface mines show that the payload variance is significant and must be considered in analysing the mine productivity, diesel energy consumption, greenhouse gas emissions and associated costs. The aim of this study is to determine the energy and cost saving opportunities for truck haulage operations associated with the payload variance in surface mines. The results indicate that there is a non-linear relationship between the payload variance and the fuel consumption, greenhouse gas emissions and associated costs. A correlation model, which is independent of haul road conditions, has been developed between the payload variance and the cost saving using the data from an Australian surface coal mine. The results of analysis for this particular mine show that a significant saving of fuel and greenhouse gas emissions costs is possible if the standard deviation of payload is reduced from the maximum to minimum value.
基金supported financially by the National Key Research and Development Plan(2018YFD0600205)the National Natural Science Foundation of China(31971669)。
文摘Underground fires are characterized by smouldering combustion with a slow rate of spread rate and without flames.Although smouldering combustion releases large amounts of gaseous pollutants,it is difficult to discover by today's forest fire monitoring technologies.Carbon monoxide(CO),nitrogen oxides(NO_(x))and sulfur dioxide(SO_(2))were identified as high concentration marker gases of smouldering combustion-easily-be monitored.According to a two-way ANOVA,combustion time had a significant impact on CO and NO_(x) emissions;smoldering-depth also had a significant impact on NO_(x) emissions but not on CO emissions.Gas emission equations were established by multiple linear regression,C_(co)=156.989-16.626 t and C_(NOx)=3.637-0.252 t-0.039 h.
基金Supported by the Fundamental Research Funds for the Central Universities of China(DUT11NY09)
文摘This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,Indiset 620 combustion analyzer made by AVL,was used to make a real-time survey on the cylinder pressure,the fuel ignition moment,and establish a relation between the change trend of temperature in cylinder and the crank angle.For the engine burning heavy oil and heavy oil mixed with additives,combustion analysis software Indicom and Concerto were used to analyze its combustion process and emission conditions.Experimental investigation shows that nano-sized complex oxide can improve the performance of diesel engine fueled with heavy oil,and reduce the emission of pollutants like NOx and CO,comparing it with the pure heavy oil.According to the consequences of this experiment,the additives improve the overall performance in the use of heavy oil.
基金Sponsored by the National Natural Science Foundation of China (40805053)
文摘The regulated pollutants (CO,HC and NOx) and unregulated pollutants (volatile organic compounds and carbonyl compounds),emitted from a dual fuel vehicle fueled with gasoline and E10 fuel,are measured under a transient cycle and steady modes.The impacts of a three-way catalyst (TWC) are investigated for the two types of fuels.The measured results show that NOx and acetaldehyde emitted from the E10-fueled car are much more than that from the gasoline-fueled car under the same modes.On the basis of maximum incremental reactivity (MIR) factors and emissions of organic gases,the ozone specific reactivity of the tailpipe gases are evaluated.
基金The authors are grateful for the financial supportive from the National Natural Science Foundation of China(71473010)and(41701635).
文摘There is a worldwide consensus that excessive anthropogenic carbon dioxide emissions will lead to global warming and other environmental problems.Supports from regulations and policies have gradually implemented in this area.As one of the most discussed policies,the carbon emissions trading schemes(CETS)has an advantage in its price-oriented and cost-saving characteristics.In this paper,we analyze and assess the CETS effect from static and dynamic perspectives by applying provincial panel data covering a period ranging from 2004 to 2017.The CETS policy has a significant constraining effect on both carbon emissions and primary energy consumption.Compared to the other two uncertainties,namely the energy price uncertainty and the technology uncertainty,the carbon permit price uncertainty has a relatively smooth impact on the economy,which is being pursued consistently by the policymakers.
基金Supported by the National Key Research and Development Plan(2016YFC0208005)the National Natural Science Foundation of China(51576016)
文摘The regulated gaseous emissions from 2 China-V compressed natural gas(CNG)buses and 2 China-V diesel buses were investigated using a portable emissions measurement system(PEMS)under real road driving conditions.Compared to diesel buses,CNG buses emit less NOx pollutants,but more HC and CO pollutants based on the test results obtained in this paper.In order to evaluate the pollutant emission status of CNG buses in Beijing,an instantaneous emission model as a function of vehicle speed and vehicle specific power(VSP)was developed and validated based on emission data taken from one CNG bus.The input of the instantaneous emission model consists of driving cycle,vehicle parameters,road conditions,ambient conditions and accessory use,all of which were used to calculate the instantaneous vehicle specific power(VSP).For the core model,a group of pollutant emission maps represented as functions of vehicle speed and VSP were used to calculate the second by second emission rates.Finally,the instantaneous emission rates,emission factors and fuel consumption over the selected driving cycle could be obtained as the model outputs.The predicted results for the emissions and fuel consumption of the CNG bus were very close to the tested emission data.The prediction errors for emission factors and fuel consumption varied in the range of-1.6 2%to-5.8%.
基金the CRUE-CSIC agreement with Springer Naturepartially funded by project FIREPATHS (PID2020-116556RA-I00)+2 种基金supported by the Spanish Ministry of Science and Innovationby project CLIMARK (LIFE16 CCM/ES/000065,supported by the LIFE Climate Change Mitigation EU program)Bountouraby Balde received a predoctoral grant from the University of Lleida。
文摘Forests are exposed to changing climatic conditions reflected by increasing drought and heat waves that increase the risk of wildfire ignition and spread.Climatic variables such as rain and wind as well as vegetation structure,land configuration and forest management practices are all factors that determine the burning potential of wildfires.The assessment of emissions released by vegetation combustion is essential for determining greenhouse gases and air pollutants.The estimation of wildfire-related emissions depends on factors such as the type and fraction of fuel(i.e.,live biomass,ground litter,dead wood)consumed by the fire in a given area,termed the burning efficiency.Most approaches estimate live burning efficiency from optical remote sensing data.This study used a data-driven method to estimate live burning efficiency in a Mediterranean area.Burning severity estimations from Lands at imagery(dNBR),which relate to fuel consumption,and quantitative field data from three national forest inventory data were combined to establish the relationship between burning severity and live burning efficiency.Several proxies explored these relationships based on dNBR interval classes,as well as regres sion models.The correlation results between live burning efficiency and dNBR for conifers(R=0.63)and broad-leaved vegetation(R=0.95)indicated ways for improving emissions estimations.Median estimations by severity class(low,moderate-low,moderate-high,and high)are provided for conifers(0.44-0.81)and broad-leaves(0.64-0.86),and regression models for the live fraction of the tree canopy susceptible to burning(<2 cm,2-7 cm,>7 branches,and leaves).The live burning efficiency values by severity class were higher than previous studies.
基金Project supported by the Natural Science Foundation of Henan Province,China(Grant No.202300410304)Key Research Project for Science and Technology of the Education Department of Henan Province,China(Grant No.21A140021)。
文摘Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which is(002)-orientation growth and approximately perpendicular to Cd foil substrate, has been fabricated by the solvothermal method. In the temperature-dependent photoluminescence, from short wavelength to long wavelength, four peaks can be ascribed to the emissions from the bandgap, the transition from the holes being bound to the donors or the electrons being bound to the acceptors, the transition from Cd interstitials to Cd vacancies, and the transition from S vacancies to the valence band,respectively. In the photoluminescence of 10 K, the emission originated from the bandgap appears in the form of multiple peaks. Two stronger peaks and five weaker peaks can be observed. The energy differences of the adjacent peaks are close to 38 me V, which is ascribed to the LO phonon energy of Cd S. For the multiple peaks of bandgap emission, from low energy to high energy, the first, second, and third peaks are contributed to the third-order, second-order, and first-order phonon replica of the free exciton A, respectively;the fourth peak is originated from the free exciton A;the fifth peak is contributed to the first-order phonon replica of the excitons bound to neutral donors;the sixth and seventh peaks are originated from the excitons bound to neutral donors and the light polarization parallel to the c axis of hexagonal Cd S, respectively.
基金supported by the National Natural Science Foundation of China (No. 71273277, 71722003, 71690244)the Philosophy and Social Sciences Major Research Project of the Ministry of Education (No. 11JZD048)the National Key R&D Program (2016YFC0208901)
文摘The studies and development of coal seam gas(CSG) have been conducted for more than 30 years in China, but few of China's CSG projects have achieved large-scale commercial success; faced with the boom of shale gas, some investors are beginning to lose patience and confidence in CSG. China currently faces the following question: Should the government continue to vigorously support the development of the CSG industry? To provide a reference for policy makers and investors, this paper calculates the EROI_(stnd)[a standardized energy return on investment(EROI) method], EROI_(ide)(the maximum theoretical EROI), EROI_(3,i)(EROI considering the energy investment in transport), and EROI_(3,1+e)(EROI with environmental inputs) of a single vertical CSG well in the Fanzhuang CSG project in the Qinshui Basin. The energy payback time(EPT) and the greenhouse gas(GHG) emissions of the CSG systems are also calculated. The results show that over a 15-year lifetime, EROI_(stnd), EROI_(ide), EROI_(3,1), and EROI_(3,1+e)are expected to deliver EROIs of approximately11:1, 20:1, 7:1, and 6:1, respectively. The EPT within different boundaries is no more than 2 years, and the life-cycle GHG emissions are approximately 18.8 million kg CO_2 equivalent. The relatively high EROI and short EPT indicate that the government should take more positive measures to promote the development of the CSG industry.
文摘In this paper,the influence of aromatic content,one of main fuel properties,on diesel particulate emissions was studied at five steady-state operating conditions using a heavy-duty Perkins 4.236 engine.Detailed analysis of the particulate showed the presence of biologically active polynuclear aromatic hydrocarbons(PAH) in high concentration.Unburnt PAH in liquid fuel are identified to be the dominant source of particulate PAH.Diesel particulates are also considered a potential health hazard because of the presence of PAH in the SOF of the particulates and some of these PAH are known to be carcinogenic.