期刊文献+
共找到2,288篇文章
< 1 2 115 >
每页显示 20 50 100
Elman回归神经网络同时定量测定三种酚类化合物 被引量:11
1
作者 高玲 石俊仙 任守信 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第1期117-120,共4页
应用Elman回归神经网络(ERNN)对光谱严重重叠的对硝基苯酚,邻硝基苯酚和2,4二硝基苯酚体系的同时定量测定进行了研究,并与多变量线性回归(MLR)法作了比较。编制了PERNN和PMLR程序执行有关计算。通过最佳化确定了Elman回归网络的结构和... 应用Elman回归神经网络(ERNN)对光谱严重重叠的对硝基苯酚,邻硝基苯酚和2,4二硝基苯酚体系的同时定量测定进行了研究,并与多变量线性回归(MLR)法作了比较。编制了PERNN和PMLR程序执行有关计算。通过最佳化确定了Elman回归网络的结构和参数。ERNN和MLR法所有组分的相对预测标准偏差(RSEP)分别为3.1%和2027.3%,实验结果显示对于分辨严重重叠光谱本法是成功的。ERNN法是解决局部最小和提高收敛速度的一种有价值的工具,亦可用于分析全光谱而不只限于选取少数特征值。本法为不经预先分离同时测定严重重叠的分子光谱体系提供了新的途径。 展开更多
关键词 elman回归神经网络 同时定量分析 重叠光谱 多变量线性回归
在线阅读 下载PDF
Elman回归神经网络研究同时定量分析紫外重叠光谱 被引量:6
2
作者 高玲 任守信 《石油化工》 EI CAS CSCD 北大核心 2004年第3期266-269,共4页
应用Elman回归神经网络对同时定量分析紫外重叠光谱进行了研究。还应用偏最小二乘法作为对比,编制了PERNN和PPLS程序执行有关计算。通过最佳化确定了Elman回归网络的结构和参数。3种组分(α-萘胺、对硝基苯胺、联苯胺)经Elman回归神经... 应用Elman回归神经网络对同时定量分析紫外重叠光谱进行了研究。还应用偏最小二乘法作为对比,编制了PERNN和PPLS程序执行有关计算。通过最佳化确定了Elman回归网络的结构和参数。3种组分(α-萘胺、对硝基苯胺、联苯胺)经Elman回归神经网络定量测定表明,该方法是成功的,且优于偏最小二乘法。 展开更多
关键词 elman回归神经网络 同时定量分析 紫外重叠光谱 偏最小二乘法
在线阅读 下载PDF
Elman回归神经网络在大坝安全监控中的应用 被引量:15
3
作者 赖道平 顾冲时 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第3期255-258,共4页
给出了Elman回归神经网络的网络结构和学习方法.基于Elman回归神经网络能够逼近任意非线性函数的特点,提出了一种基于Elman回归神经网络建立安全监控模型的方法.实验表明,所建立Elman神经网络模型收敛速度快,并且其拟合及预报精度高于... 给出了Elman回归神经网络的网络结构和学习方法.基于Elman回归神经网络能够逼近任意非线性函数的特点,提出了一种基于Elman回归神经网络建立安全监控模型的方法.实验表明,所建立Elman神经网络模型收敛速度快,并且其拟合及预报精度高于统计模型和BP网络模型. 展开更多
关键词 大坝 安全监控 E1man回归神经网络 神经网络模型
在线阅读 下载PDF
基于PSO-ChOA-Elman神经网络的船舶柴油机故障诊断
4
作者 尹文海 杨志勇 +1 位作者 尚前明 杨安邦 《船海工程》 北大核心 2025年第4期127-133,140,共8页
针对传统船舶柴油机故障诊断方法的局限性,提出一种基于粒子群算法(PSO)和黑猩猩算法(ChOA)相结合,优化Elman神经网络的船舶柴油机故障诊断方法,旨在提高故障诊断的准确性和普适性。对MAN B&W 7K98MC型柴油机的常见故障数据进行预处... 针对传统船舶柴油机故障诊断方法的局限性,提出一种基于粒子群算法(PSO)和黑猩猩算法(ChOA)相结合,优化Elman神经网络的船舶柴油机故障诊断方法,旨在提高故障诊断的准确性和普适性。对MAN B&W 7K98MC型柴油机的常见故障数据进行预处理,以消除不同量纲和数量级数据间的干扰;构建Elman神经网络模型,并使用PSO和ChOA算法对网络的参数进行优化,以提升模型性能。文中详细介绍了Elman神经网络的结构和数学模型,以及PSO和ChOA算法的原理和改进措施。通过Matlab平台的模拟实验,对比标准Elman神经网络和改进后的PSO-ChOA-Elman神经网络在故障诊断中的性能。结果显示,改进后的模型故障诊断的准确率达到99.4%,明显优于原始模型的94.01%,同时具有更高的稳定性和更快的收敛速度。所提出的基于PSO-ChOA-Elman神经网络的故障诊断方法有效地提高了船舶柴油机故障诊断的准确性和效率,为船舶柴油机的健康管理和故障预防提供一种新的技术手段。 展开更多
关键词 柴油机 故障诊断 elman神经网络 粒子群优化算法 黑猩猩优化算法
在线阅读 下载PDF
基于Elman神经网络的茶叶主产省农业产值与茶商品价格模拟
5
作者 程陈 罗屹 +3 位作者 郑生宏 王嘉仪 张含雨 丁枫华 《中国农机化学报》 北大核心 2025年第2期264-270,共7页
精准预测农业产值和农产品价格对高效利用发展农业资源、调整农业结构和加强农业信息化建设等起推动作用。基于茶叶主产省农业产值及关键影响因素数据和3种电商平台的茶商品交易数据,利用经典的逐步回归方法确定农业产值和茶商品价格的... 精准预测农业产值和农产品价格对高效利用发展农业资源、调整农业结构和加强农业信息化建设等起推动作用。基于茶叶主产省农业产值及关键影响因素数据和3种电商平台的茶商品交易数据,利用经典的逐步回归方法确定农业产值和茶商品价格的关键影响因素及权重,构建基于Elman神经网络算法的农业产值和茶商品价格模拟模型。结果表明,茶叶主产省农业产值的关键影响因素包括活动积温、降水量、粮食作物播种面积、经济作物播种面积、经济作物产量占比、农业机械总动力、机耕面积、机播面积、机收面积、农村用电量、化肥施用量(折纯量)、乡村人口数和乡村从业人员数;茶叶主产省茶商品价格的关键影响因素包括平台、省份、茶类、采摘季节、商品级别和增值服务。基于Elman神经网络算法的茶叶主产省农业产值模型模拟值与实测值的均方根误差为6.21~27.51亿元,归一化均方根误差为3.10%~12.23%;基于Elman神经网络算法的3种电商平台茶商品价格模型模拟值与实测值的均方根误差为81.94~98.26元/kg,归一化均方根误差为8.42%~35.66%。 展开更多
关键词 茶叶 elman神经网络 逐步回归 农业产值 茶商品价格 模拟模型
在线阅读 下载PDF
基于多元线性回归和反向传播人工神经网络预测离子液体的声速
6
作者 季常征 万仁 +2 位作者 时兆翀 彭昌军 刘洪来 《华东理工大学学报(自然科学版)》 北大核心 2025年第2期158-165,共8页
离子液体的声速可采用实验测定、半经验模型和理论研究方法获得,其中,定量结构-性质关系(QSPR)模型已受到广泛关注,但构造一个有效的QSPR模型取决于选择合适的分子描述符。本文采用片段活度系数类导体屏蔽模型(COSMO-SAC)获得离子液体... 离子液体的声速可采用实验测定、半经验模型和理论研究方法获得,其中,定量结构-性质关系(QSPR)模型已受到广泛关注,但构造一个有效的QSPR模型取决于选择合适的分子描述符。本文采用片段活度系数类导体屏蔽模型(COSMO-SAC)获得离子液体电荷密度分布片段面积(Sσ)和空穴体积(VCOSMO)两个描述符,并分别采用多元线性回归(MLR)和反向传播人工神经网络(BP-ANN)构建了用于描述离子液体声速的线性QSPR模型u-MLR和非线性QSPR模型u-ANN,模型中包含了温度和离子液体相对分子量,所涉及的数据集包括171种离子液体的5 114个数据点。在总的离子液体声速数据集中,u-MLR和u-ANN的决定系数(R2)分别为0.970 6和0.999 5,平均绝对相对偏差(AARD)分别为1.59%和0.10%,均方根误差(RMSE)分别为30.68 m/s和4.12 m/s。结果表明,基于人工神经网络建立的u-ANN模型的预测效果明显优于基于线性回归方法建立的u-MLR模型的预测效果。 展开更多
关键词 声速 离子液体 人工神经网络 多元线性回归 定量结构-性质关系
在线阅读 下载PDF
基于WOA-Elman神经网络的城市固废焚烧炉主蒸汽流量软测量 被引量:1
7
作者 梁伟平 薛文雅 +2 位作者 马靖宁 陈联宏 许洪滨 《控制工程》 北大核心 2025年第2期201-207,共7页
主蒸汽流量对于垃圾焚烧炉平稳运行起着重要的作用。目前,主蒸汽流量机理计算模型复杂,且准确度不高。针对这一问题,应用一种基于鲸鱼优化算法(Whale optimization algorithm,WOA)和Elman神经网络的焚烧炉主蒸汽流量软测量模型。首先,... 主蒸汽流量对于垃圾焚烧炉平稳运行起着重要的作用。目前,主蒸汽流量机理计算模型复杂,且准确度不高。针对这一问题,应用一种基于鲸鱼优化算法(Whale optimization algorithm,WOA)和Elman神经网络的焚烧炉主蒸汽流量软测量模型。首先,根据相关性分析筛选相关变量;再通过WOA优化Elman神经网络参数;最后,建立WOA-Elman神经网络主蒸汽流量软测量模型。结果表明,与其他经典软测量模型相比,建立的WOA-Elman神经网络软测量模型准确度更高,误差更小,能够有效地应用于主蒸汽流量软测量中。 展开更多
关键词 垃圾焚烧炉 主蒸汽流量 软测量 elman神经网络 鲸鱼优化算法
在线阅读 下载PDF
基于SSA-Elman神经网络的爆破振动速度预测
8
作者 王晗 闫鹏 +3 位作者 张云鹏 巩瑞杰 袁腾 杨曦 《工程爆破》 北大核心 2025年第3期140-150,共11页
为降低爆破振动对环境产生的影响,预测爆破振动速度非常有必要。选取85组爆破振动数据,采用灰色综合关联度理论识别了影响爆破振动速度的7个重要因素,通过麻雀搜索算法(SSA)改进Elman神经网络的方法建立了爆破振动速度预测模型。研究结... 为降低爆破振动对环境产生的影响,预测爆破振动速度非常有必要。选取85组爆破振动数据,采用灰色综合关联度理论识别了影响爆破振动速度的7个重要因素,通过麻雀搜索算法(SSA)改进Elman神经网络的方法建立了爆破振动速度预测模型。研究结果表明,与Elman神经网络预测模型相比,X、Y以及Z方向的爆破振动速度SSA-Elman神经网络预测模型的预测值和实测值更接近,均方根误差(RMSE)以及平均绝对误差(MAE)较小,S_(RMSE)分别减少了54.2%、9.3%、34%,S MAE分别减少了50%、5.7%、21%,说明采用SSA优化Elman神经网络权值和阈值的方法,可以提高Elman神经网络预测模型的精度。 展开更多
关键词 爆破振动预测 elman神经网络 麻雀搜索(SSA)算法 灰色综合关联度分析
在线阅读 下载PDF
基于晶体图卷积神经网络的晶格能回归模型
9
作者 郑欣雨 任泽华 +2 位作者 周利 柴士阳 吉旭 《化工学报》 北大核心 2025年第3期1084-1092,F0004,共10页
晶格能是决定晶体热力学稳定性的关键物理性质,对药物多晶型稳定性的筛选具有指导意义。晶格能的获取方式通常为实验试错和基于分子/量子力学的理论计算,对于数量庞大的晶型结构,两种方法均费时费力。提出一种基于密度泛函理论(density ... 晶格能是决定晶体热力学稳定性的关键物理性质,对药物多晶型稳定性的筛选具有指导意义。晶格能的获取方式通常为实验试错和基于分子/量子力学的理论计算,对于数量庞大的晶型结构,两种方法均费时费力。提出一种基于密度泛函理论(density functional theory,DFT)和晶体图卷积神经网络(crystal graph convolutional neural networks,CGCNN)的晶格能回归模型。首先采用自洽屏蔽多体色散校正的DFT方法计算晶格能,建立包含酸、醇、酰胺、氨基酸、酸酐等248种晶型的晶格能数据集;基于所建立的数据集,采用CGCNN进一步建立晶型和晶格能之间的定量回归模型,该模型训练集和测试集的MAPE分别为1.24%和5.04%,R2分别为0.9978和0.9750,表明该模型具有较好的预测效果,可以为高通量筛选稳定的晶型提供理论指导。 展开更多
关键词 晶格能 多晶型 密度泛函理论 神经网络 回归模型
在线阅读 下载PDF
基于广义回归神经网络的钻柱涡动识别
10
作者 朱海峰 何英明 +3 位作者 李亚峰 王名春 项明 薛启龙 《西安石油大学学报(自然科学版)》 北大核心 2025年第4期80-89,97,共11页
为及时识别井下钻具涡动,降低钻井风险,利用时频分析技术标记了实际钻井信号中典型的涡动信号,分析了钻具涡动时正交三轴加速度计信号之间的关系,将加速度信号间相关系数作为涡动识别特征,建立了基于广义回归神经网络(General Regressio... 为及时识别井下钻具涡动,降低钻井风险,利用时频分析技术标记了实际钻井信号中典型的涡动信号,分析了钻具涡动时正交三轴加速度计信号之间的关系,将加速度信号间相关系数作为涡动识别特征,建立了基于广义回归神经网络(General Regression Neural Network,GRNN)的井下钻柱涡动识别模型。研究结果表明,所建涡动识别模型的综合识别精度为91.8%,可以在大量振动数据中快速准确识别出涡动信号。研究结果可为建立井下振动识别系统提供技术方法。 展开更多
关键词 振动信号 钻柱涡动 模式识别 广义回归神经网络
在线阅读 下载PDF
融合卷积神经网络与线性回归的带式输送机托辊故障音频识别方法
11
作者 陈湘源 秦伟 +1 位作者 刘晏驰 罗明华 《煤炭科学技术》 北大核心 2025年第S1期389-398,共10页
针对煤矿井下带式输送机托辊故障音频识别中存在的声源复杂、特征不显著等问题,提出一种融合卷积神经网络与线性回归的托辊故障音频识别方法。首先通过带式输送机巡检机器人搭载的MEMS拾音器采集托辊沿线音频信号,基于小波自相关去噪技... 针对煤矿井下带式输送机托辊故障音频识别中存在的声源复杂、特征不显著等问题,提出一种融合卷积神经网络与线性回归的托辊故障音频识别方法。首先通过带式输送机巡检机器人搭载的MEMS拾音器采集托辊沿线音频信号,基于小波自相关去噪技术对声音进行预处理,抑制音频信号中的背景噪声信号,优化数据质量。其次利用声纹谱分离技术,采用HPSS(谐波冲击波源分离)方法分离出谐波、冲击波分量,增强托辊故障声音信号特征;基于MFCC(梅尔频率倒谱系数)声纹特征提取方法,解析出谐波-冲击波中托辊声纹特征信息,生成声谱图,提升托辊故障声纹表征能力。最后以声谱图与声品质特征为数据源,融合故障多模态特征,丰富数据维度,基于残差卷积神经网络结构计算图像特征,多元线性回归快速拟合音频基本特征,生成融合卷积神经网络与线性回归的托辊故障音频识别模型进行联合训练,通过Focal Loss损失函数优化模型训练的样本权重,提高模型对托辊故障识别的准确率。用该方法对国能榆林郭家湾煤矿实际采集的带式输送机故障托辊音频信息进行分析验证,结果表明:托辊故障检出率达到95.79%,检出准确率达到95.60%。 展开更多
关键词 托辊故障 音频识别 声纹特征 声谱图 残差卷积神经网络 多元线性回归
在线阅读 下载PDF
基于广义回归神经网络的光纤光栅传感器解调技术研究
12
作者 夏翔 李贤良 +3 位作者 潘华 闫东 张晓锋 张云辉 《电测与仪表》 北大核心 2025年第2期62-68,共7页
针对现有光纤光栅传感器波长峰值检测方法存在的误差大、稳定性差等问题,提出了一种基于广义回归神经网络和改进粒子群优化算法的光纤光栅传感器波长峰值检测方法。通过改进的粒子群优化算法对广义回归神经网络的平滑因子进行寻优,提高... 针对现有光纤光栅传感器波长峰值检测方法存在的误差大、稳定性差等问题,提出了一种基于广义回归神经网络和改进粒子群优化算法的光纤光栅传感器波长峰值检测方法。通过改进的粒子群优化算法对广义回归神经网络的平滑因子进行寻优,提高广义回归神经网络中心波长计算的准确性。通过试验分析所提方法在不同中心波长下的性能。结果表明,所提方法比传统方法更稳定,解调误差更小,整体中心波长绝对偏差降低了35.90%和24.24%,相对波长变化偏差降低了20.00%和13.04%。 展开更多
关键词 光纤光栅 峰值检测 中心波长 粒子群优化算法 广义回归神经网络
在线阅读 下载PDF
基于Elman神经网络的旱情预测模型研究
13
作者 杨靖峰 边东波 +1 位作者 王宝龙 杨溢 《天津农林科技》 2025年第1期12-18,共7页
文章以2018年9月1日至2021年8月31日天津市蓟州区、静海区、宁河区、滨海新区的10个气象自动监测站的3年数据为基础,研究建立基于Elman神经网络的旱情预测模型,并对模型应用进行测试评价。文章数据选取空气温度、空气湿度、风速、风向... 文章以2018年9月1日至2021年8月31日天津市蓟州区、静海区、宁河区、滨海新区的10个气象自动监测站的3年数据为基础,研究建立基于Elman神经网络的旱情预测模型,并对模型应用进行测试评价。文章数据选取空气温度、空气湿度、风速、风向等18项影响因子训练Elman神经网络模型,对旱情进行短期(24 h)、中期(7 d)、长期(14 d)预测。结果显示,基于Elman神经网络的旱情预测模型短、中、长期3个时期的平均旱情预测准确度分别达到97.82%、91.71%、88.94%,与2023年建立的墒情预测模型结果(短期、中期、长期预测准确度分别为96.64%、90.60%、85.59%)[1]进行对比,短、中、长期3个时期旱情预测模型的平均预测准确度均高于同期墒情预测模型的准确度,其中旱情预测模型Ⅲ(14 d)对20 cm土层深度的旱情预测准确度比同期同层次墒情预测模型的准确度提高9.3%。研究发现,天津地区的气候特点与我国北方大部分地区相似,降雨主要集中于一年内的某些月份,从而使得旱情预测模型的预测准确度高于墒情预测模型的预测准确度,故本研究的旱情预测模型可以推广至我国北方大部分地区及中西部地区,以期为当地旱情、墒情预测预报研究提供参考。 展开更多
关键词 旱情 elman神经网络 短期预测 中长期预测
在线阅读 下载PDF
基于线性回归分析与BP神经网络的枣树需水量研究
14
作者 方婷 《南方农机》 2025年第5期44-46,50,共4页
【目的】需水量的预测是实现智能灌溉的关键环节,将先进的计算机技术应用到需水量的预测中具有重要现实意义。【方法】根据气象资料数据以及枣树逐日参考需水量,以空气温度、平均风速、空气湿度、日照时数为输入向量,采用线性回归分析... 【目的】需水量的预测是实现智能灌溉的关键环节,将先进的计算机技术应用到需水量的预测中具有重要现实意义。【方法】根据气象资料数据以及枣树逐日参考需水量,以空气温度、平均风速、空气湿度、日照时数为输入向量,采用线性回归分析和BP神经网络模型对枣树需水量进行了相关预测研究,并从365组实验数据中随机选取40组样本数据进行了枣树需水量预测对比。【结果】1)整体线性回归分析要优于逐步线性回归分析,且空气温度、平均风速、空气湿度对枣树需水量的影响要高于日照时数;2)BP神经网络的预测值与实际值的线性拟合值为0.983,高于线性回归方程的0.941;3)BP神经网络的残差相对较小且波动幅度小,而线性回归方程的残差较大且不稳定;BP神经网络相对于线性回归分析对需水量的预测效果更好,更适用于枣树需水量的预测研究;而线性回归分析可以分析出气象因素对需水量的影响程度,能够为模型输入向量的选择提供依据。【结论】本研究为后续枣树需水量预测研究奠定了一定的基础,未来的研究工作中可以选取更多的影响因素来进行试验,进一步提高预测效果,助力实现枣树智能节水灌溉。 展开更多
关键词 线性回归分析 BP神经网络 枣树需水量预测 线性拟合
在线阅读 下载PDF
基于神经网络模型的县域尺度农业碳排放研究
15
作者 张合兵 潘怡莎 +2 位作者 聂小军 王重洋 张慧芳 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期111-120,共10页
目的为测算平顶山市各县区2010—2020年农业碳排放,开展基于神经网络模型的县域尺度农业碳排放研究。方法从县域角度出发,从投入与产出角度对各影响因子进行分析,并在此基础上建立农业碳排放预测模型。采用灰色关联分析和Robust回归分析... 目的为测算平顶山市各县区2010—2020年农业碳排放,开展基于神经网络模型的县域尺度农业碳排放研究。方法从县域角度出发,从投入与产出角度对各影响因子进行分析,并在此基础上建立农业碳排放预测模型。采用灰色关联分析和Robust回归分析,得出各影响因素的关联程度及对农业碳排放的影响,初步确定各影响因素权重,建立神经网络预测模型,并将预测结果与实际值进行检验评价。结果结果表明:(1)平顶山市受农业生产分布区域影响,环中心城区县市承担主要农业生产活动,农业碳排放量较高;(2)灰色关联分析结果显示,农资投入要素对平顶山农业碳排放量影响显著,其中化肥与碳排放量相关度最高,产出因素相关度存在一定差异;(3)Robust回归分析结果给出了各影响因素的影响方向,指出玉米种植对农业碳排放的产生呈负相关关系,油料,瓜果,农业劳动力与农业碳排放关系不明显;(4)预测模型结果与实际值相关系数R2为0.99,拟合度较好。结论研究结果可为区域农业高质量发展和农业碳减排政策的制定提供一定理论支持与技术支撑。 展开更多
关键词 农业碳排放 灰色关联 神经网络 Robust回归分析 农业碳排放影响因素
在线阅读 下载PDF
基于异构图神经网络的网络切片端到端时延估计
16
作者 胡海峰 朱漪雯 赵海涛 《计算机科学》 北大核心 2025年第3期349-358,共10页
端到端时延作为网络切片重要的性能指标,在切片部署中因受到网络拓扑、流量模型和调度策略等影响,很难通过建模方式进行准确预测。为了解决上述问题,提出基于异构图神经网络的网络切片时延预测(Heterogeneous Graph Neural Network-Base... 端到端时延作为网络切片重要的性能指标,在切片部署中因受到网络拓扑、流量模型和调度策略等影响,很难通过建模方式进行准确预测。为了解决上述问题,提出基于异构图神经网络的网络切片时延预测(Heterogeneous Graph Neural Network-Based Network Slicing Latency Prediction,HGNN)算法。首先,构建了切片-队列-链路的分层异构图,实现了切片的分层特征表达。然后,针对分层图中切片、队列和链路3种类型节点的属性特点,使用异构图神经网络挖掘拓扑动态变化、边特征信息和长依赖关系等和切片相关的底层特征,即分别选用GraphSAGE图神经网络、EGRET图神经网络和门控循环单元GRU来提取切片、队列和链路特征。同时,利用基于异构图神经网络的深度回归实现了网络切片特征表达的更新迭代和切片时延的准确预测。最后,通过构建基于OMNeT++的不同拓扑结构、流量模型和调度策略的切片数据库,验证了HGNN在实际网络场景下对切片端到端时延预测的有效性,并通过对比多种基于图深度学习的切片时延预测算法,进一步验证了HGNN在时延预测准确度和泛化性方面的优越性。 展开更多
关键词 网络切片 异构图神经网络 时延预测 深度回归
在线阅读 下载PDF
基于IWOA-SA-Elman神经网络的短期风电功率预测 被引量:6
17
作者 刘吉成 朱玺瑞 于晶 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期143-150,共8页
由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算... 由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算法和模拟退火组合优化的Elman神经网络短期风电功率预测模型,模型首先利用改进鲸鱼算法结合模拟退火策略获得高质量神经网络初始权值,接着引入正则化损失函数防止其过拟合,最后以西班牙瓦伦西亚某风电场陆上短期风电功率为研究对象,将该算法与BP、LSTM、Elman、WOA-Elman、IWOA-Elman 5种神经网络算法进行算法性能测试对比,结果表明IWOA-SA-Elman神经网络模型预测误差最小,验证了该算法的合理性和有效性。 展开更多
关键词 风电 elman神经网络 预测 模拟退火 鲸鱼优化算法
在线阅读 下载PDF
基于分类-回归卷积神经网络的新能源电力系统可靠性评估方法 被引量:3
18
作者 邵成成 任孟极 +2 位作者 徐天元 钱涛 王锡凡 《中国电机工程学报》 EI CSCD 北大核心 2024年第23期9134-9144,I0002,共12页
Monte Carlo模拟(Monte Carlo simulation,MCS)在复杂电力系统可靠性评估中广泛应用,但计算效率较低。针对此,该文提出一种基于卷积神经网络(conventional neural network,CNN)的可靠性评估方法,在时序MCS框架下采用CNN加速系统状态评... Monte Carlo模拟(Monte Carlo simulation,MCS)在复杂电力系统可靠性评估中广泛应用,但计算效率较低。针对此,该文提出一种基于卷积神经网络(conventional neural network,CNN)的可靠性评估方法,在时序MCS框架下采用CNN加速系统状态评估计算。首先,构造反映系统运行状态的特征向量,建立基于CNN的系统失负荷量回归模型;其次,针对可靠性评估样本不均衡、回归训练效率低的问题,进一步建立系统状态分类器,形成基于CNN的分类-回归模型;此外,针对CNN训练样本和实际评估样本不一致的问题,提出分类结果矫正机制,进一步提升模型的实用性;最后,通过改编IEEE-RTS系统的计算分析验证了所提方法的有效性和优越性。 展开更多
关键词 卷积神经网络 可靠性评估 分类-回归 数据驱动
在线阅读 下载PDF
基于GM(1,1)与BP神经网络模型的西安市地下水位动态特征及趋势预测研究
19
作者 李培月 梁豪 +2 位作者 杨俊岩 田艳 寇晓梅 《西北地质》 北大核心 2025年第3期236-245,共10页
地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位... 地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位动态的主要因素,通过SPSS对影响地下水位动态的降水量和开采量两个主要因素进行相关性分析,并基于GM(1,1)灰度预测模型和BP神经网络模型对地下水位变动趋势进行了预测。结果表明:(1)2010~2016年,地下水位整体上呈下降趋势,2016~2020年间,得益于地下水压采和供水设施的不断优化完善,地下水位呈回升趋势。(2)降水和人为开采均对西安市地下水位变动具有显著影响;地下水位埋深是决定受降水影响程度的关键因素,其中河漫滩地区最为敏感,阶地次之,黄土塬区较弱。地下水开采量与地下水位埋深具有更强的相关性。这凸显了其在调控地下水位动态变化中的主导地位。(3)地下水位预测结果显示,随着地下水开采量呈现出逐年下降的趋势,研究区地下水整体处于波动上升趋势。本研究对西安市地下水动态的影响因素及预测趋势进行了研究,对地下水资源管理和可持续发展具有重要参考价值。 展开更多
关键词 地下水位动态 主导因素 回归分析 灰色模型 BP神经网络预测
在线阅读 下载PDF
预测输尿管软镜碎石术后并发尿源性脓毒症的反向传播神经网络模型构建
20
作者 陈文炜 何彦丰 +5 位作者 卢凯鑫 刘昌毅 江涛 张华 高锐 薛学义 《浙江大学学报(医学版)》 北大核心 2025年第1期99-107,I0032-I0034,共12页
目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性... 目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性脓毒症的影响因素及其交互作用。同时建立logistic回归模型和神经网络模型进行预测,通过受试者工作特征曲线评估两种模型的预测效能。结果:单因素分析显示,结石手术史、性别、尿培养阳性、结石直径、糖尿病、手术时间、白细胞、血小板、C反应蛋白(CRP)及肝素结合蛋白(HBP)水平与FURL后并发尿源性脓毒症显著相关(均P<0.05)。多因素分析表明,尿培养阳性、CRP及HBP水平是FURL后并发尿源性脓毒症的独立危险因素(均P<0.05)。交互作用分析显示,CRP与HBP对FURL后并发尿源性脓毒症的影响在相加模型(RERI=8.453,95%CI:2.645~16.282;AP=0.696,95%CI:0.131~1.273;S=3.369,95%CI:1.176~7.632)和相乘模型(OR=1.754,95%CI:1.218~3.650)中存在交互作用;CRP与尿培养对FURL后并发尿源性脓毒症的影响在相乘模型(OR=2.449,95%CI:1.525~3.825)中存在交互作用。预测模型比较显示,反向传播神经网络模型较logistic回归模型具有更优的预测效能。结论:CRP和HBP水平是FURL后并发尿源性脓毒症的独立危险因素,基于CRP、HBP等因素构建的反向传播神经网络模型较logistic回归模型具有更高的预测准确性。 展开更多
关键词 肝素结合蛋白 C反应蛋白 输尿管软镜碎石术 尿源性脓毒症 预测 LOGISTIC回归模型 反向传播神经网络模型
在线阅读 下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部