Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
锆粉具有密度大、体积热值高、点火和燃烧性能良好的优点,是提升推进剂密度比冲的重要燃料,但由于其静电火花感度高,使用中易燃烧,在推进剂中应用存在安全隐患。为提高锆粉的抗静电性能,研究采用一种推进剂常用的聚叠氮缩水甘油醚(GAP)...锆粉具有密度大、体积热值高、点火和燃烧性能良好的优点,是提升推进剂密度比冲的重要燃料,但由于其静电火花感度高,使用中易燃烧,在推进剂中应用存在安全隐患。为提高锆粉的抗静电性能,研究采用一种推进剂常用的聚叠氮缩水甘油醚(GAP)含能粘合剂,对锆粉进行包覆改性,获得了Zr/GAP复合粒子。研究其形态、结构、热性能和抗静电火花性能。结果表明,包覆处理可显著降低锆粉粒子的静电火花感度,50%发火能从5.13 m J提高至24.91 m J,并且保留了锆粉的高密度特性及良好的燃烧性能。研究成果为促进锆粉在高密度推进剂中的应用提供了技术支持。展开更多
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
文摘锆粉具有密度大、体积热值高、点火和燃烧性能良好的优点,是提升推进剂密度比冲的重要燃料,但由于其静电火花感度高,使用中易燃烧,在推进剂中应用存在安全隐患。为提高锆粉的抗静电性能,研究采用一种推进剂常用的聚叠氮缩水甘油醚(GAP)含能粘合剂,对锆粉进行包覆改性,获得了Zr/GAP复合粒子。研究其形态、结构、热性能和抗静电火花性能。结果表明,包覆处理可显著降低锆粉粒子的静电火花感度,50%发火能从5.13 m J提高至24.91 m J,并且保留了锆粉的高密度特性及良好的燃烧性能。研究成果为促进锆粉在高密度推进剂中的应用提供了技术支持。