The reduction of TE-scattering by a conducting cylinder with multiple surface impedance loads is investigated. Synthesis procedures are developed to find the optimal loading which result in zero scattering in the desi...The reduction of TE-scattering by a conducting cylinder with multiple surface impedance loads is investigated. Synthesis procedures are developed to find the optimal loading which result in zero scattering in the desired directions or at several frequencies. Numerical results of these procedures are presented. The theoretical predictions are confirmed with an experiment. The proposed synthesis procedure is completely general and can be applied to arbitrarily shaped conducting bodies.展开更多
A general 2-D problem of electromagnetic scattering from a multiple cavity-backed longitudinally loaded slotted perfectly conducting cylinder with arbitrary cross section is formulated. The formulation is used to acco...A general 2-D problem of electromagnetic scattering from a multiple cavity-backed longitudinally loaded slotted perfectly conducting cylinder with arbitrary cross section is formulated. The formulation is used to account for the scattered field from the scale models, for which, a series of experiments has been conducted in an anechoic chamber. Quite good agreement between theory and experiment is obtained. The analysis of the experimental results near resonant frequency shows that the reduction of backscattering radar cross section over wide aspect angles, and the dominant enhancement of target angular glint (linear deviation) can be achieved by impedance loading such as multiple cavity-backed slots, which realizes a new stealth technique for vehicles.展开更多
文摘The reduction of TE-scattering by a conducting cylinder with multiple surface impedance loads is investigated. Synthesis procedures are developed to find the optimal loading which result in zero scattering in the desired directions or at several frequencies. Numerical results of these procedures are presented. The theoretical predictions are confirmed with an experiment. The proposed synthesis procedure is completely general and can be applied to arbitrarily shaped conducting bodies.
文摘A general 2-D problem of electromagnetic scattering from a multiple cavity-backed longitudinally loaded slotted perfectly conducting cylinder with arbitrary cross section is formulated. The formulation is used to account for the scattered field from the scale models, for which, a series of experiments has been conducted in an anechoic chamber. Quite good agreement between theory and experiment is obtained. The analysis of the experimental results near resonant frequency shows that the reduction of backscattering radar cross section over wide aspect angles, and the dominant enhancement of target angular glint (linear deviation) can be achieved by impedance loading such as multiple cavity-backed slots, which realizes a new stealth technique for vehicles.