脑电信号(Electroencephalogram,EEG)作为一种客观直接的信息源,被广泛应用于情绪识别任务。为了提取脑电信号的空间连通特征所隐含的信息,提出了一种基于空间连通特征和残差卷积神经网络(Spatial connectivity features and residual c...脑电信号(Electroencephalogram,EEG)作为一种客观直接的信息源,被广泛应用于情绪识别任务。为了提取脑电信号的空间连通特征所隐含的信息,提出了一种基于空间连通特征和残差卷积神经网络(Spatial connectivity features and residual convolutional neural network,SCF-RCNN)模型的情绪识别方法。该方法从经预处理的脑电信号中提取皮尔逊相关系数(Pearson correlation coefficient,PCC)、锁相值(Phase-locked value,PLV)和互信息(Mutual information,MI)作为空间连通特征,使用包含两个残差模块的卷积神经网络模型来提取情感信息。在SEED数据集上的实验结果显示,PLV构造的连接矩阵与脑电情绪关系更为密切,其平均准确率可达93.38%,标准差为3.35%。与传统算法相比,SCF-RCNN在情绪识别领域的分类任务中表现更为优越,表明该方法在情绪识别领域具有重要的应用潜力。展开更多
现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号...现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号控制鼠标和键盘的操作。研究了脑-机接口中常用的3种脑电信号,分别是P300波、alpha波以及稳态视觉诱发电位(steady state visual evoked potential,SSVEP),通过设计实验成功的诱发出了被试相应的特征脑电信号。利用SSVEP的脑电特征设计6频率LED闪烁刺激的虚拟鼠标系统,实现控制鼠标光标移动、单击左键和单击右键的任务;利用P300波的脑电特征设计6×6的字符矩阵虚拟键盘系统,实现字符输入的任务;利用被试自主闭眼增强alpha波的脑电特征,实现鼠标和键盘应用切换的任务。研究了适宜这3种脑电特征的最佳测量电极组合及模式识别算法,使得对3种脑电信号的识别正确率均达到了85%以上。测试结果显示,文中设计的基于多模式EEG的脑-机接口虚拟键鼠系统能有效地实现鼠标控制以及键盘输入的任务。展开更多
文摘现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号控制鼠标和键盘的操作。研究了脑-机接口中常用的3种脑电信号,分别是P300波、alpha波以及稳态视觉诱发电位(steady state visual evoked potential,SSVEP),通过设计实验成功的诱发出了被试相应的特征脑电信号。利用SSVEP的脑电特征设计6频率LED闪烁刺激的虚拟鼠标系统,实现控制鼠标光标移动、单击左键和单击右键的任务;利用P300波的脑电特征设计6×6的字符矩阵虚拟键盘系统,实现字符输入的任务;利用被试自主闭眼增强alpha波的脑电特征,实现鼠标和键盘应用切换的任务。研究了适宜这3种脑电特征的最佳测量电极组合及模式识别算法,使得对3种脑电信号的识别正确率均达到了85%以上。测试结果显示,文中设计的基于多模式EEG的脑-机接口虚拟键鼠系统能有效地实现鼠标控制以及键盘输入的任务。