在运动想象脑电信号采集过程中,因受试者注意力不集中而未严格遵从提示进行对应的运动想象,导致所采集脑电数据与提示(标签)不一致,即出现“噪声标签”,降低了模型捕捉关键特征的能力,影响模型在新受试者上的泛化。基于此,本文提出一种...在运动想象脑电信号采集过程中,因受试者注意力不集中而未严格遵从提示进行对应的运动想象,导致所采集脑电数据与提示(标签)不一致,即出现“噪声标签”,降低了模型捕捉关键特征的能力,影响模型在新受试者上的泛化。基于此,本文提出一种“噪声标签”下多尺度时空特征学习的运动想象分类方法。首先,采用卷积神经网络提取脑电信号多尺度局部时间特征,降低个体间差异性影响;其次,在时空维度上分块划分特征图,作为Transformer模块输入,利用时空特征融合模块,优化全局时空特征;最后,引入对称交叉熵损失,将交叉熵计算方式扩展到所有类别,降低“噪声标签”的影响。在PhysioNet和BCI IV 2a运动想象数据集上的实验结果表明,本文方法的平均准确率优于其他方法,其中在PhysioNet数据集上引入对称交叉熵损失,二、三和四分类的平均准确率分别提升0.09%、0.65%和0.66%。此外,在不同比例的“噪声标签”干扰下,无需增加模型参数量和计算量,对称交叉熵损失就能改善模型的分类性能与鲁棒性。展开更多
现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号...现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号控制鼠标和键盘的操作。研究了脑-机接口中常用的3种脑电信号,分别是P300波、alpha波以及稳态视觉诱发电位(steady state visual evoked potential,SSVEP),通过设计实验成功的诱发出了被试相应的特征脑电信号。利用SSVEP的脑电特征设计6频率LED闪烁刺激的虚拟鼠标系统,实现控制鼠标光标移动、单击左键和单击右键的任务;利用P300波的脑电特征设计6×6的字符矩阵虚拟键盘系统,实现字符输入的任务;利用被试自主闭眼增强alpha波的脑电特征,实现鼠标和键盘应用切换的任务。研究了适宜这3种脑电特征的最佳测量电极组合及模式识别算法,使得对3种脑电信号的识别正确率均达到了85%以上。测试结果显示,文中设计的基于多模式EEG的脑-机接口虚拟键鼠系统能有效地实现鼠标控制以及键盘输入的任务。展开更多
文摘在运动想象脑电信号采集过程中,因受试者注意力不集中而未严格遵从提示进行对应的运动想象,导致所采集脑电数据与提示(标签)不一致,即出现“噪声标签”,降低了模型捕捉关键特征的能力,影响模型在新受试者上的泛化。基于此,本文提出一种“噪声标签”下多尺度时空特征学习的运动想象分类方法。首先,采用卷积神经网络提取脑电信号多尺度局部时间特征,降低个体间差异性影响;其次,在时空维度上分块划分特征图,作为Transformer模块输入,利用时空特征融合模块,优化全局时空特征;最后,引入对称交叉熵损失,将交叉熵计算方式扩展到所有类别,降低“噪声标签”的影响。在PhysioNet和BCI IV 2a运动想象数据集上的实验结果表明,本文方法的平均准确率优于其他方法,其中在PhysioNet数据集上引入对称交叉熵损失,二、三和四分类的平均准确率分别提升0.09%、0.65%和0.66%。此外,在不同比例的“噪声标签”干扰下,无需增加模型参数量和计算量,对称交叉熵损失就能改善模型的分类性能与鲁棒性。
文摘现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号控制鼠标和键盘的操作。研究了脑-机接口中常用的3种脑电信号,分别是P300波、alpha波以及稳态视觉诱发电位(steady state visual evoked potential,SSVEP),通过设计实验成功的诱发出了被试相应的特征脑电信号。利用SSVEP的脑电特征设计6频率LED闪烁刺激的虚拟鼠标系统,实现控制鼠标光标移动、单击左键和单击右键的任务;利用P300波的脑电特征设计6×6的字符矩阵虚拟键盘系统,实现字符输入的任务;利用被试自主闭眼增强alpha波的脑电特征,实现鼠标和键盘应用切换的任务。研究了适宜这3种脑电特征的最佳测量电极组合及模式识别算法,使得对3种脑电信号的识别正确率均达到了85%以上。测试结果显示,文中设计的基于多模式EEG的脑-机接口虚拟键鼠系统能有效地实现鼠标控制以及键盘输入的任务。