Ecoregion-based height-diameter models were developed in the present study for Scots pine(Pinus sylves-tris L.)stands in Turkiye and included several ecological factors derived from a pre-existing ecoregional classifi...Ecoregion-based height-diameter models were developed in the present study for Scots pine(Pinus sylves-tris L.)stands in Turkiye and included several ecological factors derived from a pre-existing ecoregional classification system.The data were obtained from 2831 sample trees in 292 sample plots.Ten generalized height–diameter models were developed,and the best model(HD10)was selected according to statistical criteria.Then,nonlinear mixed-effects modeling was applied to the best model.The R2 for the generalized height‒diameter model(Richards function)modified by Sharma and Parton is 0.951,and the final model included number of trees,dominant height,and diameter at breast height,with a random parameter associated with each ecoregion attached to the inverse of the mean basal area.The full model predictions using the nonlinear mixed-effects model and the reduced model(HD10)predictions were compared using the nonlinear sum of extra squares test,which revealed significant differences between ecore-gions;ecoregion-based height–diameter models were thus found to be suitable to use.In addition,using these models in appropriate ecoregions was very important for achieving reliable predictions with low prediction errors.展开更多
Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- ch...Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- chantable sizes, assisting in sustainable forest management. In the present study, ecoregion-based compatible volume systems for brutian pine and black pine in the three ecoregions of southern Turkey were developed. Several well-known taper functions were evaluated. A second- order continuous-time autoregressive error structure was used to correct the inherent autocorrelation in the hierar- chical data, allowing the model to be applied to irregularly spaced and unbalanced data. The compatible segmented model of Fang et al. (For Sci 46:1-12, 2000) best described the experimental data. It is therefore recommended for estimating diameter at a specific height, height to a specific diameter, merchantable volume, and total volume for the three ecoregions and two species analyzed. The nonlinearextra sum of squares method indicated differences in ecoregion and tree-specific taper functions. A different taper function should therefore be used for each pine spe- cies and ecoregion in southern Turkey. Using ecoregion- specific taper equations allows making more robust esti- mations and, therefore, will enhance the accuracy of diameter at different heights and volume predictions.展开更多
Biotic and abiotic factors control aboveground biomass(AGB)and the structure of forest ecosystems.This study analyses the variation of AGB and stand structure of evergreen broadleaved forests among six ecoregions of V...Biotic and abiotic factors control aboveground biomass(AGB)and the structure of forest ecosystems.This study analyses the variation of AGB and stand structure of evergreen broadleaved forests among six ecoregions of Vietnam.A data set of 1731-ha plots from 52 locations in undisturbed old-growth forests was developed.The results indicate that basal area and AGB are closely correlated with annual precipitation,but not with annual temperature,evaporation or hours of sunshine.Basal area and AGB are positively correlated with trees>30 cm DBH.Most areas surveyed(52.6%)in these old-growth forests had AGB of 100–200 Mg ha^-1;5.2%had AGB of 400–500 Mg ha^-1,and 0.6%had AGB of>800 Mg ha^-1.Seventy percent of the areas surveyed had stand densities of 300–600 ind.ha^-1,and 64%had basal areas of 20–40 m^2 ha^-1.Precipitation is an important factor influencing the AGB of old-growth,evergreen broadleaved forests in Vietnam.Disturbances causing the loss of large-diameter trees(e.g.,>100 cm DBH)affects AGB but may not seriously affect stand density.展开更多
Background: Tropical dry forests cover less than 13 % of the world's tropical forests and their area and biodiversity are declining. In southern Africa, the major threat is increasing population pressure, while drou...Background: Tropical dry forests cover less than 13 % of the world's tropical forests and their area and biodiversity are declining. In southern Africa, the major threat is increasing population pressure, while drought caused by climate change is a potential threat in the drier transition zones to shrub land. Monitoring climate change impacts in these transition zones is difficult as there is inadequate information on forest composition to allow disentanglement from other environmental drivers. Methods: This study combined historical and modern forest inventories covering an area of 21,000 km2 in a transition zone in Namibia and Angola to distinguish late succession tree communities, to understand their dependence on site factors, and to detect trends in the forest composition over the last 40 years. Results: The woodlands were dominated by six tree species that represented 84 % of the total basal area and can be referred to as Bdikioea - Pterocarpus woodlands. A boosted regression tree analysis revealed that late succession tree communities are primarily determined by climate and topography. The Schinziophyton rautanenfi and Baikiaea plurijuga communities are common on slightly inclined dune or valley slopes and had the highest basal area (5.5 - 6.2 m^2 ha&-1). The Burkea africana - Guibourtia coleosperma and Pterocarpus angolensis - Diafium englerianum communities are typical for the sandy plateaux and have a higher proportion of smaller stems caused by a higher fire frequency. A decrease in overall basal area or a trend of increasing domination by the more drought and cold resilient B. africana community was not confirmed by the historical data, but there were significant decreases in basal area for Ochna pulchra and the valuable fruit tree D. englerianum. Conclusions: The slope communities are more sheltered from fire, frost and drought but are more susceptible to human expansion. The community with the important timber tree P. angolensis can best withstand high fire frequency but shows signs of a higher vulnerability to climate change. Conservation and climate adaptation strategies should include protection of the slope communities through refuges. Follow-up studies are needed on short term dynamics, especially near the edges of the transition zone towards shrub land.展开更多
Historical and current climate impacts reshape the evolutionary trajectory and ecological dynamics of entire vegetative communities,which can drive insect species distribution.Understanding the spatial distribution of...Historical and current climate impacts reshape the evolutionary trajectory and ecological dynamics of entire vegetative communities,which can drive insect species distribution.Understanding the spatial distribution of insects can enhance forest management effectiveness.The effects of historical and current climates in the spatial distribution of herbivorous tree insects in China were explored.A species distribution model simulated insect spatial distribution based on 596 species and the distribution probability and richness of these species were assessed in forest ecoregions.The explanatory power of the historical climate was stronger than that of the current climate,particularly historical annual precipitation and annual mean temperatures,for the distribution of herbivorous insects.Under both historical and current climatic conditions,herbivorous tree insects were and are mainly distributed in the North China Plain and the middle and lower reaches of the Yangtze River Plain,namely in the Huang He Plain mixed forests,Changjiang Plain evergreen forests,and Sichuan Basin evergreen broadleaf forests.The Yunnan-Guizhou Plateau and northeast China are regions with large impact differences between historical and current climates.The findings of this study provide valuable insights into herbivorous insect responses to sustained climate change and may contribute to long-term biodiversity conservation activities.展开更多
基金supported by Scientific Research Projects Management Coordinator of Kastamonu University,under grant number KÜ-BAP01/2019-41.
文摘Ecoregion-based height-diameter models were developed in the present study for Scots pine(Pinus sylves-tris L.)stands in Turkiye and included several ecological factors derived from a pre-existing ecoregional classification system.The data were obtained from 2831 sample trees in 292 sample plots.Ten generalized height–diameter models were developed,and the best model(HD10)was selected according to statistical criteria.Then,nonlinear mixed-effects modeling was applied to the best model.The R2 for the generalized height‒diameter model(Richards function)modified by Sharma and Parton is 0.951,and the final model included number of trees,dominant height,and diameter at breast height,with a random parameter associated with each ecoregion attached to the inverse of the mean basal area.The full model predictions using the nonlinear mixed-effects model and the reduced model(HD10)predictions were compared using the nonlinear sum of extra squares test,which revealed significant differences between ecore-gions;ecoregion-based height–diameter models were thus found to be suitable to use.In addition,using these models in appropriate ecoregions was very important for achieving reliable predictions with low prediction errors.
基金financially supported by the Scientific and Technological Research Council of Turkey(Project No:109 O 714)
文摘Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- chantable sizes, assisting in sustainable forest management. In the present study, ecoregion-based compatible volume systems for brutian pine and black pine in the three ecoregions of southern Turkey were developed. Several well-known taper functions were evaluated. A second- order continuous-time autoregressive error structure was used to correct the inherent autocorrelation in the hierar- chical data, allowing the model to be applied to irregularly spaced and unbalanced data. The compatible segmented model of Fang et al. (For Sci 46:1-12, 2000) best described the experimental data. It is therefore recommended for estimating diameter at a specific height, height to a specific diameter, merchantable volume, and total volume for the three ecoregions and two species analyzed. The nonlinearextra sum of squares method indicated differences in ecoregion and tree-specific taper functions. A different taper function should therefore be used for each pine spe- cies and ecoregion in southern Turkey. Using ecoregion- specific taper equations allows making more robust esti- mations and, therefore, will enhance the accuracy of diameter at different heights and volume predictions.
基金funded by Vietnam Ministry of Science and Technology under Grant numberDTDL.XH.10/15Vietnam National Foundation for Science&Technology Development(106-NN.06-2016.10)International Foundation for Science(J-1-D-4602-3)。
文摘Biotic and abiotic factors control aboveground biomass(AGB)and the structure of forest ecosystems.This study analyses the variation of AGB and stand structure of evergreen broadleaved forests among six ecoregions of Vietnam.A data set of 1731-ha plots from 52 locations in undisturbed old-growth forests was developed.The results indicate that basal area and AGB are closely correlated with annual precipitation,but not with annual temperature,evaporation or hours of sunshine.Basal area and AGB are positively correlated with trees>30 cm DBH.Most areas surveyed(52.6%)in these old-growth forests had AGB of 100–200 Mg ha^-1;5.2%had AGB of 400–500 Mg ha^-1,and 0.6%had AGB of>800 Mg ha^-1.Seventy percent of the areas surveyed had stand densities of 300–600 ind.ha^-1,and 64%had basal areas of 20–40 m^2 ha^-1.Precipitation is an important factor influencing the AGB of old-growth,evergreen broadleaved forests in Vietnam.Disturbances causing the loss of large-diameter trees(e.g.,>100 cm DBH)affects AGB but may not seriously affect stand density.
基金support of The Future Okavango(TFO)and the SASSCAL projects which were funded by the German Federal Ministry of Education and Research under promotion numbers 01 LL 0912 A and 01 LG1201 M respectivelysupport by the KLIMOS ACROPOLIS research platform(Belgian Development Aid through VLIR/ARES)
文摘Background: Tropical dry forests cover less than 13 % of the world's tropical forests and their area and biodiversity are declining. In southern Africa, the major threat is increasing population pressure, while drought caused by climate change is a potential threat in the drier transition zones to shrub land. Monitoring climate change impacts in these transition zones is difficult as there is inadequate information on forest composition to allow disentanglement from other environmental drivers. Methods: This study combined historical and modern forest inventories covering an area of 21,000 km2 in a transition zone in Namibia and Angola to distinguish late succession tree communities, to understand their dependence on site factors, and to detect trends in the forest composition over the last 40 years. Results: The woodlands were dominated by six tree species that represented 84 % of the total basal area and can be referred to as Bdikioea - Pterocarpus woodlands. A boosted regression tree analysis revealed that late succession tree communities are primarily determined by climate and topography. The Schinziophyton rautanenfi and Baikiaea plurijuga communities are common on slightly inclined dune or valley slopes and had the highest basal area (5.5 - 6.2 m^2 ha&-1). The Burkea africana - Guibourtia coleosperma and Pterocarpus angolensis - Diafium englerianum communities are typical for the sandy plateaux and have a higher proportion of smaller stems caused by a higher fire frequency. A decrease in overall basal area or a trend of increasing domination by the more drought and cold resilient B. africana community was not confirmed by the historical data, but there were significant decreases in basal area for Ochna pulchra and the valuable fruit tree D. englerianum. Conclusions: The slope communities are more sheltered from fire, frost and drought but are more susceptible to human expansion. The community with the important timber tree P. angolensis can best withstand high fire frequency but shows signs of a higher vulnerability to climate change. Conservation and climate adaptation strategies should include protection of the slope communities through refuges. Follow-up studies are needed on short term dynamics, especially near the edges of the transition zone towards shrub land.
基金supported by the National Natural Science Foundation of China (Nos.31800449 and 31800464)。
文摘Historical and current climate impacts reshape the evolutionary trajectory and ecological dynamics of entire vegetative communities,which can drive insect species distribution.Understanding the spatial distribution of insects can enhance forest management effectiveness.The effects of historical and current climates in the spatial distribution of herbivorous tree insects in China were explored.A species distribution model simulated insect spatial distribution based on 596 species and the distribution probability and richness of these species were assessed in forest ecoregions.The explanatory power of the historical climate was stronger than that of the current climate,particularly historical annual precipitation and annual mean temperatures,for the distribution of herbivorous insects.Under both historical and current climatic conditions,herbivorous tree insects were and are mainly distributed in the North China Plain and the middle and lower reaches of the Yangtze River Plain,namely in the Huang He Plain mixed forests,Changjiang Plain evergreen forests,and Sichuan Basin evergreen broadleaf forests.The Yunnan-Guizhou Plateau and northeast China are regions with large impact differences between historical and current climates.The findings of this study provide valuable insights into herbivorous insect responses to sustained climate change and may contribute to long-term biodiversity conservation activities.