根据2000年和2006年秋季长江口及毗邻水域渔业资源和生态环境调查数据,利用Ecopath with Ecosim软件,构建2个时期的长江口及毗邻水域生态能量通道模型,比较分析了三峡工程蓄水前后长江口及毗邻水域生态系统的结构和能量流动特征。模型...根据2000年和2006年秋季长江口及毗邻水域渔业资源和生态环境调查数据,利用Ecopath with Ecosim软件,构建2个时期的长江口及毗邻水域生态能量通道模型,比较分析了三峡工程蓄水前后长江口及毗邻水域生态系统的结构和能量流动特征。模型包含鱼类、虾类、蟹类、头足类、浮游动物、浮游植物、底栖动物、碎屑等17个功能群,基本覆盖了能量流动的途径。分析结果表明,2006年秋季长江口及毗邻水域生态系统的总生物量、系统总流量比2000年秋季有所下降,碎屑链的重要性略有降低;由于低营养级层次渔获物数量的增加,渔获物平均营养级有所下降。2个时期长江口及毗邻水域生态系统的再循环率较低,仍有较高的剩余生产量有待利用,均处于不成熟的发育期。展开更多
为探讨莱州湾生态系统年代际变化,基于莱州湾1980年代(1980s)和2020年代(2020s)相关数据,应用Ecopath with Ecosim(EwE)软件,分别构建莱州湾1980s和2020s的Ecopath模型,对比莱州湾生态系统年代际的结构和功能差异。结果显示,两个年代莱...为探讨莱州湾生态系统年代际变化,基于莱州湾1980年代(1980s)和2020年代(2020s)相关数据,应用Ecopath with Ecosim(EwE)软件,分别构建莱州湾1980s和2020s的Ecopath模型,对比莱州湾生态系统年代际的结构和功能差异。结果显示,两个年代莱州湾生态系统均存在牧食食物链和碎屑食物链两种能量传递途径,能量流动主要集中在低营养级,能量流动规律符合金字塔逐级递减规律;与1980s相比,2020s莱州湾生态系统功能组营养级下降,生物量减少;2020s莱州湾流向碎屑量和系统总流量降低,资源再循环效率提高,总初级生产量/总呼吸量和系统净生产量降低,Finn’s循环指数和Finn’s平均路径长度增大,连接指数增大。研究表明,2020s莱州湾生态系统规模比1980s有所下降,生态系统的稳定性有所提高。展开更多
利用Ecopath with Ecosim在前期研究的基础上构建了3个时期(2000年秋、2006年秋、2012年秋)长江口水域生态系统的生态通道模型,分析对比了三峡工程蓄水前中后期,长江口水域生态系统结构与能量流动特征。模型将长江口水域生态系统划分为...利用Ecopath with Ecosim在前期研究的基础上构建了3个时期(2000年秋、2006年秋、2012年秋)长江口水域生态系统的生态通道模型,分析对比了三峡工程蓄水前中后期,长江口水域生态系统结构与能量流动特征。模型将长江口水域生态系统划分为鱼类、虾类、蟹类、头足类、底栖动物、浮游动物、浮游植物、碎屑等17个功能组,基本覆盖了长江口生态系统能量流动的主要途径。模型结果分析表明:蓄水前中后期,长江口水域生态系统各功能组营养级组成和分布相近,但由于长江口渔业过度捕捞,蓄水中后期多数功能组的生态营养转换率被动提高。长江口渔获物的组成未发生明显变化,但渔获物的平均营养级降低,渔获量减少。蓄水中后期,生态系统中牧食食物链的重要性增加,碎屑食物链的重要性降低,这与蓄水之后长江入海径流改变、泥沙量减少、陆源污染增加关系密切。结果表明,蓄水前中后期,生态系统均处于不成熟阶段,蓄水后生态系统总生物量、初级生产量及流向碎屑的能量呈降低趋势,但系统的净效率和再循环率升高。展开更多
食物网结构特征和能量流动的研究,对于维持海洋生态系统结构和功能的稳定具有重要意义,有助于深入理解海洋生态系统的复杂过程。本研究基于2019-2021年在江苏近海北部海域开展的季节性渔业资源底拖网调查数据,通过构建基于蒙特卡罗马尔...食物网结构特征和能量流动的研究,对于维持海洋生态系统结构和功能的稳定具有重要意义,有助于深入理解海洋生态系统的复杂过程。本研究基于2019-2021年在江苏近海北部海域开展的季节性渔业资源底拖网调查数据,通过构建基于蒙特卡罗马尔科夫链算法的逆线性模型(Linear Inverse Models using a Monte Carlo Method Coupled with Markov Chain, LIM-MCMC),结合生态网络分析(Ecological Network Analysis,ENA)的方法,分析了该海域生态系统状态和食物网能量流动特征,旨在为江苏近海北部海域食物网营养动力学研究提供参考依据。结果表明,该海域生态系统共包含299条能量流动路径,能量流动分布整体呈典型的金字塔结构,各功能群呼吸消耗和流入有机碎屑的能量保持同步性。通过与其他海域比较发现,江苏近海北部海域生态系统的连接指数(Connectance,C)和系统杂食指数(System Omnivory Index,SOI)分别为0.40和0.22,处于较高水平,表明该生态系统不同营养级间的营养联系较为紧密,食物网结构相对复杂,能够在较大程度上抵御外界扰动。总初级生产力/总呼吸(Total Primary Production/Total Respiration,TPP/TR)和Finn’s循环指数(Finn’s Cycling Index,FCI)分别为1.05和5.76%,表明该生态系统对能量利用效率较高。此外,约束效率(Constraint Efficiency,CE)、发展程度(Extent of Development,AC)、协同效应指数(Synergism Index,b/c)和主导间接效应(Dominance Indirect Effects,i/d)也表明该生态系统具有较高的系统发展程度、再生潜力和系统发展空间。本研究将有助于为江苏近海北部海域生态系统的修复和渔业资源的可持续利用提供理论基础,为实施基于生态系统的渔业管理提供科学依据。展开更多
文摘根据2000年和2006年秋季长江口及毗邻水域渔业资源和生态环境调查数据,利用Ecopath with Ecosim软件,构建2个时期的长江口及毗邻水域生态能量通道模型,比较分析了三峡工程蓄水前后长江口及毗邻水域生态系统的结构和能量流动特征。模型包含鱼类、虾类、蟹类、头足类、浮游动物、浮游植物、底栖动物、碎屑等17个功能群,基本覆盖了能量流动的途径。分析结果表明,2006年秋季长江口及毗邻水域生态系统的总生物量、系统总流量比2000年秋季有所下降,碎屑链的重要性略有降低;由于低营养级层次渔获物数量的增加,渔获物平均营养级有所下降。2个时期长江口及毗邻水域生态系统的再循环率较低,仍有较高的剩余生产量有待利用,均处于不成熟的发育期。
文摘为探讨莱州湾生态系统年代际变化,基于莱州湾1980年代(1980s)和2020年代(2020s)相关数据,应用Ecopath with Ecosim(EwE)软件,分别构建莱州湾1980s和2020s的Ecopath模型,对比莱州湾生态系统年代际的结构和功能差异。结果显示,两个年代莱州湾生态系统均存在牧食食物链和碎屑食物链两种能量传递途径,能量流动主要集中在低营养级,能量流动规律符合金字塔逐级递减规律;与1980s相比,2020s莱州湾生态系统功能组营养级下降,生物量减少;2020s莱州湾流向碎屑量和系统总流量降低,资源再循环效率提高,总初级生产量/总呼吸量和系统净生产量降低,Finn’s循环指数和Finn’s平均路径长度增大,连接指数增大。研究表明,2020s莱州湾生态系统规模比1980s有所下降,生态系统的稳定性有所提高。
文摘利用Ecopath with Ecosim在前期研究的基础上构建了3个时期(2000年秋、2006年秋、2012年秋)长江口水域生态系统的生态通道模型,分析对比了三峡工程蓄水前中后期,长江口水域生态系统结构与能量流动特征。模型将长江口水域生态系统划分为鱼类、虾类、蟹类、头足类、底栖动物、浮游动物、浮游植物、碎屑等17个功能组,基本覆盖了长江口生态系统能量流动的主要途径。模型结果分析表明:蓄水前中后期,长江口水域生态系统各功能组营养级组成和分布相近,但由于长江口渔业过度捕捞,蓄水中后期多数功能组的生态营养转换率被动提高。长江口渔获物的组成未发生明显变化,但渔获物的平均营养级降低,渔获量减少。蓄水中后期,生态系统中牧食食物链的重要性增加,碎屑食物链的重要性降低,这与蓄水之后长江入海径流改变、泥沙量减少、陆源污染增加关系密切。结果表明,蓄水前中后期,生态系统均处于不成熟阶段,蓄水后生态系统总生物量、初级生产量及流向碎屑的能量呈降低趋势,但系统的净效率和再循环率升高。
文摘食物网结构特征和能量流动的研究,对于维持海洋生态系统结构和功能的稳定具有重要意义,有助于深入理解海洋生态系统的复杂过程。本研究基于2019-2021年在江苏近海北部海域开展的季节性渔业资源底拖网调查数据,通过构建基于蒙特卡罗马尔科夫链算法的逆线性模型(Linear Inverse Models using a Monte Carlo Method Coupled with Markov Chain, LIM-MCMC),结合生态网络分析(Ecological Network Analysis,ENA)的方法,分析了该海域生态系统状态和食物网能量流动特征,旨在为江苏近海北部海域食物网营养动力学研究提供参考依据。结果表明,该海域生态系统共包含299条能量流动路径,能量流动分布整体呈典型的金字塔结构,各功能群呼吸消耗和流入有机碎屑的能量保持同步性。通过与其他海域比较发现,江苏近海北部海域生态系统的连接指数(Connectance,C)和系统杂食指数(System Omnivory Index,SOI)分别为0.40和0.22,处于较高水平,表明该生态系统不同营养级间的营养联系较为紧密,食物网结构相对复杂,能够在较大程度上抵御外界扰动。总初级生产力/总呼吸(Total Primary Production/Total Respiration,TPP/TR)和Finn’s循环指数(Finn’s Cycling Index,FCI)分别为1.05和5.76%,表明该生态系统对能量利用效率较高。此外,约束效率(Constraint Efficiency,CE)、发展程度(Extent of Development,AC)、协同效应指数(Synergism Index,b/c)和主导间接效应(Dominance Indirect Effects,i/d)也表明该生态系统具有较高的系统发展程度、再生潜力和系统发展空间。本研究将有助于为江苏近海北部海域生态系统的修复和渔业资源的可持续利用提供理论基础,为实施基于生态系统的渔业管理提供科学依据。