There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly eas...There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.展开更多
气候变化会显著影响冻土、冰川等对温度变化敏感的生态系统,造成区域生态系统服务价值和生态风险发生变化。为揭示气候变化对青藏高原典型冻土区域的生态系统服务价值的影响和可能造成的生态风险,基于2000-2020年土地利用数据,运用生态...气候变化会显著影响冻土、冰川等对温度变化敏感的生态系统,造成区域生态系统服务价值和生态风险发生变化。为揭示气候变化对青藏高原典型冻土区域的生态系统服务价值的影响和可能造成的生态风险,基于2000-2020年土地利用数据,运用生态系统服务价值(Ecosystem Service Value,ESV)评估、生态风险指数(Ecological Risk Index,ERI)评估、双变量空间自相关、地理探测器等模型和方法,分析了南羌塘盆地东区ESV、ERI的时空演变、空间关联和空间分异特征。结果显示:(1)2000-2020年,南羌塘盆地东区ESV呈增长趋势,累计增长5.76%(276.98亿元),草地和水域贡献了超98.70%的ESV。研究区ESV总体呈中部高、四周低的分布格局,以中等价值区为主(面积约占研究区总面积的70.37%)。(2)研究区ERI整体呈上升趋势,总体呈东南低、西北高的分布格局,以极低风险区为主(面积约占研究区总面积的60.68%)。(3)研究区ESV和ERI具有空间负相关性(Moran s I<0),主要LISA聚类为低价值—低风险(面积约占研究区总面积的34.26%)。(4)区域ESV和ERI的空间分异受自然因子和经济因子共同作用影响,其中归一化植被指数为二者空间分异的主导因子(q值分别为0.55和0.19)。研究结果表明需根据研究区ESV和ERI的时空分布和变化特征,采取因地制宜的生态保护措施,推动区域生态环境的可持续发展。展开更多
文摘There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.
文摘气候变化会显著影响冻土、冰川等对温度变化敏感的生态系统,造成区域生态系统服务价值和生态风险发生变化。为揭示气候变化对青藏高原典型冻土区域的生态系统服务价值的影响和可能造成的生态风险,基于2000-2020年土地利用数据,运用生态系统服务价值(Ecosystem Service Value,ESV)评估、生态风险指数(Ecological Risk Index,ERI)评估、双变量空间自相关、地理探测器等模型和方法,分析了南羌塘盆地东区ESV、ERI的时空演变、空间关联和空间分异特征。结果显示:(1)2000-2020年,南羌塘盆地东区ESV呈增长趋势,累计增长5.76%(276.98亿元),草地和水域贡献了超98.70%的ESV。研究区ESV总体呈中部高、四周低的分布格局,以中等价值区为主(面积约占研究区总面积的70.37%)。(2)研究区ERI整体呈上升趋势,总体呈东南低、西北高的分布格局,以极低风险区为主(面积约占研究区总面积的60.68%)。(3)研究区ESV和ERI具有空间负相关性(Moran s I<0),主要LISA聚类为低价值—低风险(面积约占研究区总面积的34.26%)。(4)区域ESV和ERI的空间分异受自然因子和经济因子共同作用影响,其中归一化植被指数为二者空间分异的主导因子(q值分别为0.55和0.19)。研究结果表明需根据研究区ESV和ERI的时空分布和变化特征,采取因地制宜的生态保护措施,推动区域生态环境的可持续发展。