本文对海洋气象漂流观测仪实测、CMA最佳路径数据集、第5代全球气象再分析产品(ERA5)、交叉检验多平台融合矢量风场(CCMP)四种资料的海面风在超强台风“利奇马”期间的变化特征进行分析。ERA5、CCMP两种分析/再分析风资料与实测风的对...本文对海洋气象漂流观测仪实测、CMA最佳路径数据集、第5代全球气象再分析产品(ERA5)、交叉检验多平台融合矢量风场(CCMP)四种资料的海面风在超强台风“利奇马”期间的变化特征进行分析。ERA5、CCMP两种分析/再分析风资料与实测风的对比分析表明:(1)风速:当风力<10级时,漂流观测仪轨迹上的ERA5、CCMP风速较漂流观测仪实测风速偏小;将漂流观测仪实测风速订正到10 m高度,风力≤5级时偏差(Bias)绝对值最小,ERA5(CCMP)为4.3 m s^(-1)(4.6 m s^(-1)),风力为7~9级时Bias绝对值最大,约9.2~10.2 m s^(-1);“利奇马”近中心海域ERA5、CCMP最大风速较CMA最佳路径数据集偏小,ERA5(CCMP)偏小约10.7 m s^(-1)(4.6 m s^(-1));ERA5(CCMP)最大风速极值较CMA最佳路径数据集偏低54.5%(12.7%)。(2)风向:ERA5、CCMP与漂流观测仪实测风向相关系数接近于0;风力≤5级时风向较实测偏右,风力>5级时偏左。(3)ERA5、CCMP风向、风速在“利奇马”近中心海域偏差明显,远离中心海域二者吻合度较高。通过对ERA5、CCMP资料进一步分析发现:CCMP能清楚描述热带气旋风场结构及演变过程,“利奇马”为超强台风时结构参数η=Vr/Vmax分布上有闭合环状结构,表明该区域有环状大风速带;“利奇马”强迫时间T_f分布于移动路径两侧,ERA5(CCMP)最大强迫时间为45 h(54 h)。展开更多
利用东京台风中心提供的1971—2020年的西北太平洋热带气旋资料,对南海生成热带气旋的发生频数、发生源地、强度和持续时间、移动路径以及大风分布特征进行统计分析。结果表明:南海热带气旋主要生成于5—12月,其中6—9月为盛行期,约有70...利用东京台风中心提供的1971—2020年的西北太平洋热带气旋资料,对南海生成热带气旋的发生频数、发生源地、强度和持续时间、移动路径以及大风分布特征进行统计分析。结果表明:南海热带气旋主要生成于5—12月,其中6—9月为盛行期,约有70%的热带气旋生成;热带气旋生成位置季节变化明显,6—9月多生成于南海北部17°N附近,11月—次年4月多生成于14°N以南的南海南部,5月和10月为季节转换期,生成位置大幅北进或南撤;热带气旋中心最低气压为940~1004 hPa,平均值为985.4 hPa,近中心最大风速为35~85 kt,平均值为48.3 kt,平均持续天数为6.2 d;热带气旋移动路径以西移和西北移路径居多,各月都有发生,其次为东北移路径,主要发生在5—6月;近90%的南海热带气旋10级以上大风以中心呈对称分布,大风圈平均半径为53.2 n mile,在7级以上大风中以中心呈对称分布的略多于不对称分布的,7级大风圈的平均半径为142.3 n mile。展开更多
利用回归统计方法分析了热带印度洋海盆模影响西北地区东部5月降水异常的大气环流异常分布及可能的物理机制。结果表明:印度洋暖海盆模可以在亚欧地区大气中引起类似"Matsuno-Gill Pattern"的大气响应,在对流层中上层形成异...利用回归统计方法分析了热带印度洋海盆模影响西北地区东部5月降水异常的大气环流异常分布及可能的物理机制。结果表明:印度洋暖海盆模可以在亚欧地区大气中引起类似"Matsuno-Gill Pattern"的大气响应,在对流层中上层形成异常波列,西北地区东部正好位于新疆—巴尔喀什湖负异常中心和东亚地区正异常中心之间,处在明显西低东高的高度场异常形势下,这正是西北地区东部5月降水异常偏多的典型环流形势。对应波列分布,欧亚范围存在3个明显异常气旋、反气旋,对流层高层200 h Pa华北到西北地区东部为大片气流异常辐散区,低层850 h Pa为气流辐合,形成异常垂直上升运动,有利于西北区东部降水异常偏多。因此印度洋海盆模是通过引起遥相关波列,在西北地区东部上空形成西低东高的异常环流,从而影响该地区的降水异常。展开更多
文摘本文对海洋气象漂流观测仪实测、CMA最佳路径数据集、第5代全球气象再分析产品(ERA5)、交叉检验多平台融合矢量风场(CCMP)四种资料的海面风在超强台风“利奇马”期间的变化特征进行分析。ERA5、CCMP两种分析/再分析风资料与实测风的对比分析表明:(1)风速:当风力<10级时,漂流观测仪轨迹上的ERA5、CCMP风速较漂流观测仪实测风速偏小;将漂流观测仪实测风速订正到10 m高度,风力≤5级时偏差(Bias)绝对值最小,ERA5(CCMP)为4.3 m s^(-1)(4.6 m s^(-1)),风力为7~9级时Bias绝对值最大,约9.2~10.2 m s^(-1);“利奇马”近中心海域ERA5、CCMP最大风速较CMA最佳路径数据集偏小,ERA5(CCMP)偏小约10.7 m s^(-1)(4.6 m s^(-1));ERA5(CCMP)最大风速极值较CMA最佳路径数据集偏低54.5%(12.7%)。(2)风向:ERA5、CCMP与漂流观测仪实测风向相关系数接近于0;风力≤5级时风向较实测偏右,风力>5级时偏左。(3)ERA5、CCMP风向、风速在“利奇马”近中心海域偏差明显,远离中心海域二者吻合度较高。通过对ERA5、CCMP资料进一步分析发现:CCMP能清楚描述热带气旋风场结构及演变过程,“利奇马”为超强台风时结构参数η=Vr/Vmax分布上有闭合环状结构,表明该区域有环状大风速带;“利奇马”强迫时间T_f分布于移动路径两侧,ERA5(CCMP)最大强迫时间为45 h(54 h)。
文摘利用东京台风中心提供的1971—2020年的西北太平洋热带气旋资料,对南海生成热带气旋的发生频数、发生源地、强度和持续时间、移动路径以及大风分布特征进行统计分析。结果表明:南海热带气旋主要生成于5—12月,其中6—9月为盛行期,约有70%的热带气旋生成;热带气旋生成位置季节变化明显,6—9月多生成于南海北部17°N附近,11月—次年4月多生成于14°N以南的南海南部,5月和10月为季节转换期,生成位置大幅北进或南撤;热带气旋中心最低气压为940~1004 hPa,平均值为985.4 hPa,近中心最大风速为35~85 kt,平均值为48.3 kt,平均持续天数为6.2 d;热带气旋移动路径以西移和西北移路径居多,各月都有发生,其次为东北移路径,主要发生在5—6月;近90%的南海热带气旋10级以上大风以中心呈对称分布,大风圈平均半径为53.2 n mile,在7级以上大风中以中心呈对称分布的略多于不对称分布的,7级大风圈的平均半径为142.3 n mile。
文摘利用回归统计方法分析了热带印度洋海盆模影响西北地区东部5月降水异常的大气环流异常分布及可能的物理机制。结果表明:印度洋暖海盆模可以在亚欧地区大气中引起类似"Matsuno-Gill Pattern"的大气响应,在对流层中上层形成异常波列,西北地区东部正好位于新疆—巴尔喀什湖负异常中心和东亚地区正异常中心之间,处在明显西低东高的高度场异常形势下,这正是西北地区东部5月降水异常偏多的典型环流形势。对应波列分布,欧亚范围存在3个明显异常气旋、反气旋,对流层高层200 h Pa华北到西北地区东部为大片气流异常辐散区,低层850 h Pa为气流辐合,形成异常垂直上升运动,有利于西北区东部降水异常偏多。因此印度洋海盆模是通过引起遥相关波列,在西北地区东部上空形成西低东高的异常环流,从而影响该地区的降水异常。