The waters in the shallow part of the Yellow Sea and East China Sea are affected greatly by climatic and geographical conditions and fail to possess homogeneity and conservativeness like oceanic waters. They have appa...The waters in the shallow part of the Yellow Sea and East China Sea are affected greatly by climatic and geographical conditions and fail to possess homogeneity and conservativeness like oceanic waters. They have apparent difference in modified degrees, so we may regard a certain range of mixed water as a relatively independent one. In fact, the study of water masses in the shallow sea means a modified analysis of waters. The idea of modified water masses is introduced, i. e., a water body which holds the similar physical and chemical characters, occupies a certain space, and varies seasonally and regularly. On the T-S diagram, it displays as a certain amount of points aggregated together, the centre of which changes regularly and may have a process of combination and separation.According to the clustering method, there are eight modified water masses in this area. They may also be divided into three salinity types. On the T-S diagram, the points concerning temperature and salinity of different展开更多
The idea of modified water masses is introduced and a cluster analysis is used for determining the boundary of modified water masses and its variety in the shallow water area of the Huanghai Sea (Yellow Sea) and the E...The idea of modified water masses is introduced and a cluster analysis is used for determining the boundary of modified water masses and its variety in the shallow water area of the Huanghai Sea (Yellow Sea) and the East China Sea. According to the specified standards to make the cluster, we have determined the number and boundary of the water masses and the mixed zones.The results obtained by the cluster method show that there are eight modified water masses in this area. According to the relative index of temperature and salinity,the modified water masses are divided into nine different characteristic parts. The water, masses may also be divided into three salinity types. On the TS-Diagram, the points concerning temperature and safinity of different modified mater masses are distributed around a curve, from which the characteristics of gradual modification may be embodied. The variation ranges of different modified water masses are all large, explaining the intensive modification of water masses in展开更多
浮游植物的碳生物量和叶绿素a浓度比值(简记为C∶Chl-a)是海洋生物地球化学过程中的关键基础参数,在自然环境下有极大的变化.通过收集和整理近年来南海的东南亚时间序列观测(the South East Asian Time-series Study,SEATS)站的现场调...浮游植物的碳生物量和叶绿素a浓度比值(简记为C∶Chl-a)是海洋生物地球化学过程中的关键基础参数,在自然环境下有极大的变化.通过收集和整理近年来南海的东南亚时间序列观测(the South East Asian Time-series Study,SEATS)站的现场调查资料,对比分析了超微型浮游植物中三大类群的变化及其总C∶Chl-a的垂直分布.叶绿素a浓度通过高效液相色谱分析获得,碳生物量依据文献报道的同纬度海区的C∶Chl-a计算或基于流式细胞技术分析细胞丰度与体积后经换算得到.结果显示基于这两种方法计算得到的超微型浮游植物三大类群的碳生物量之间均存在极显著正相关(n=41,p<0.001),其中聚球藻(Synechococcus)基于高效液相色谱分析获得的碳生物量有一定的高估,而原绿球藻(Prochlorocoecus)和超微型真核藻类(pico-eukaryotes)的数据结果则基本一致,这种差异可能与聚球藻的光适应机制有关.通过计算南海SEATS站全粒径浮游植物的C∶Chl-a,发现其呈现随深度递减的变化趋势,但相对于同纬度海区整体上偏小,进而讨论了南海SEATS站浮游植物时空分布模式和C∶Chl-a变化的原因.展开更多
利用欧洲中期天气预报中心提供的全球大气再分析资料、美国国家海洋和大气管理局提供的高分辨率海表温度逐日数据集和最佳路径数据集(the international best track archive for climate stewardship,IBTrACS)等资料,采用WRF(weather re...利用欧洲中期天气预报中心提供的全球大气再分析资料、美国国家海洋和大气管理局提供的高分辨率海表温度逐日数据集和最佳路径数据集(the international best track archive for climate stewardship,IBTrACS)等资料,采用WRF(weather research and forecasting)模式,对2022年第11号台风“轩岚诺”在东海黑潮快速增强的原因进行了诊断分析和数值模拟研究。结果表明,台风快速增强期间其中心处于东海黑潮主轴上,此时台风中心远离高空槽和高空急流,环境风垂直切变在增强时段维持在较高水平,超过8 m·s^(-1),均不利于台风增强,而东海黑潮区海表温度异常达到1~3℃,为台风发展提供大量热通量,同时26℃等温线深度达85~110 m,0~250 m深度范围内海水温度异常在台风快速增强前达2.5℃左右,表明上层海洋热含量丰富,有助于抑制台风经过引起的冷却作用。因此,东海黑潮区显著的海表温度暖异常和海洋上层热含量正异常对台风的快速增强起了关键作用。展开更多
文摘The waters in the shallow part of the Yellow Sea and East China Sea are affected greatly by climatic and geographical conditions and fail to possess homogeneity and conservativeness like oceanic waters. They have apparent difference in modified degrees, so we may regard a certain range of mixed water as a relatively independent one. In fact, the study of water masses in the shallow sea means a modified analysis of waters. The idea of modified water masses is introduced, i. e., a water body which holds the similar physical and chemical characters, occupies a certain space, and varies seasonally and regularly. On the T-S diagram, it displays as a certain amount of points aggregated together, the centre of which changes regularly and may have a process of combination and separation.According to the clustering method, there are eight modified water masses in this area. They may also be divided into three salinity types. On the T-S diagram, the points concerning temperature and salinity of different
文摘The idea of modified water masses is introduced and a cluster analysis is used for determining the boundary of modified water masses and its variety in the shallow water area of the Huanghai Sea (Yellow Sea) and the East China Sea. According to the specified standards to make the cluster, we have determined the number and boundary of the water masses and the mixed zones.The results obtained by the cluster method show that there are eight modified water masses in this area. According to the relative index of temperature and salinity,the modified water masses are divided into nine different characteristic parts. The water, masses may also be divided into three salinity types. On the TS-Diagram, the points concerning temperature and safinity of different modified mater masses are distributed around a curve, from which the characteristics of gradual modification may be embodied. The variation ranges of different modified water masses are all large, explaining the intensive modification of water masses in
文摘浮游植物的碳生物量和叶绿素a浓度比值(简记为C∶Chl-a)是海洋生物地球化学过程中的关键基础参数,在自然环境下有极大的变化.通过收集和整理近年来南海的东南亚时间序列观测(the South East Asian Time-series Study,SEATS)站的现场调查资料,对比分析了超微型浮游植物中三大类群的变化及其总C∶Chl-a的垂直分布.叶绿素a浓度通过高效液相色谱分析获得,碳生物量依据文献报道的同纬度海区的C∶Chl-a计算或基于流式细胞技术分析细胞丰度与体积后经换算得到.结果显示基于这两种方法计算得到的超微型浮游植物三大类群的碳生物量之间均存在极显著正相关(n=41,p<0.001),其中聚球藻(Synechococcus)基于高效液相色谱分析获得的碳生物量有一定的高估,而原绿球藻(Prochlorocoecus)和超微型真核藻类(pico-eukaryotes)的数据结果则基本一致,这种差异可能与聚球藻的光适应机制有关.通过计算南海SEATS站全粒径浮游植物的C∶Chl-a,发现其呈现随深度递减的变化趋势,但相对于同纬度海区整体上偏小,进而讨论了南海SEATS站浮游植物时空分布模式和C∶Chl-a变化的原因.
文摘利用欧洲中期天气预报中心提供的全球大气再分析资料、美国国家海洋和大气管理局提供的高分辨率海表温度逐日数据集和最佳路径数据集(the international best track archive for climate stewardship,IBTrACS)等资料,采用WRF(weather research and forecasting)模式,对2022年第11号台风“轩岚诺”在东海黑潮快速增强的原因进行了诊断分析和数值模拟研究。结果表明,台风快速增强期间其中心处于东海黑潮主轴上,此时台风中心远离高空槽和高空急流,环境风垂直切变在增强时段维持在较高水平,超过8 m·s^(-1),均不利于台风增强,而东海黑潮区海表温度异常达到1~3℃,为台风发展提供大量热通量,同时26℃等温线深度达85~110 m,0~250 m深度范围内海水温度异常在台风快速增强前达2.5℃左右,表明上层海洋热含量丰富,有助于抑制台风经过引起的冷却作用。因此,东海黑潮区显著的海表温度暖异常和海洋上层热含量正异常对台风的快速增强起了关键作用。