Prediction has become more and more difficult in mineral exploration, especially in the mature exploration environment such as Tongling copper district. For enhancing predictive discovery of hidden ore deposits in suc...Prediction has become more and more difficult in mineral exploration, especially in the mature exploration environment such as Tongling copper district. For enhancing predictive discovery of hidden ore deposits in such mature environment, the key strategies which should be adopted include the innovation of the exploration models, application of the advanced exploration techniques and integration of multiple sets of information. The innovation of the exploration models should incorporate the new metallogenic concepts that are based on the geodynamic anatomization. The advanced techniques applied in the mature exploration environment should aim at the speciality and complexity of the geological setting and working environments. The information synthesis is to integrate multiple sets of data for giving a more credible and visual prospectivity map by using the geographic imformation system(GIS) and several mathematical methods, such as weight of evidence and fuzzy logic, which can extract useful information from every set of data as much as possible. Guided by these strategies, a predictive exploration in Fenghuangshan ore field of Tongling copper district was implemented, and a hidden ore deposit was discovered.展开更多
China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of th...China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of the Moon in human history.Chang'E-5 was launched in December 2020,bringing back 1731 g of lunar soil samples.Through the detailed analysis of the samples,the scientists understand the history of late lunar volcanism,specifically extending lunar volcanism by about 800 million to 1 billion years,and proposed possible mechanisms.In addition,there are many new understandings of space weathering such as meteorite impacts and solar wind radiation on the Moon.China's first Mars exploration mission Tianwen-1 was successfully launched in July 2021.Through the study of scientific data,a number of important scientific achievements have been made in the topography,water environment and shallow surface structure of Mars.This paper introduces the main scientific achievements of Chang'E-4,Chang'E-5 and Tianwen-1 in the past two years,excluding technical and engineering contents.Due to the large number of articles involved,this paper only introduces part of the results.展开更多
China has carried out four unmanned missions to the Moon since it launched Chang’E-1,the first lunar orbiter in 2007.With the implementation of the Chang’E-5 mission this year,the three phases of the lunar explorati...China has carried out four unmanned missions to the Moon since it launched Chang’E-1,the first lunar orbiter in 2007.With the implementation of the Chang’E-5 mission this year,the three phases of the lunar exploration program,namely orbiting,landing and returning,have been completed.In the plan of follow-up unmanned lunar exploration missions,it is planned to establish an experimental lunar research station at the lunar south pole by 2030 through the implementation of several missions,laying a foundation for the establishment of practical lunar research station in the future.China successfully launched its first Mars probe on 23 July 2020,followed in future by an asteroid mission,second Mars mission,and a mission to explore Jupiter and its moons.展开更多
Space environment exploration is a hot topic globally.The scope of space exploration ranges from near-Earth space to the moon,other planets in the solar system,and even the heliosphere and interplanetary space.It is u...Space environment exploration is a hot topic globally.The scope of space exploration ranges from near-Earth space to the moon,other planets in the solar system,and even the heliosphere and interplanetary space.It is used for various crucial applications,including aerospace technology development,space weather research,understanding the origin and evolution of the universe,searching for extraterrestrial life,and finding human livable places.Although China’s space environment exploration started late,its progress has been rapid.China is gradually narrowing the gap with advanced countries and may eventually lead the world in space research.This article briefly reviews the development history of China’s space environmental detectors.展开更多
Focusing on the key scientific questions of deep space exploration which include the origin and evolution of the solar system and its planets, disastrous impact on the Earth by the solar activities and small bodies, e...Focusing on the key scientific questions of deep space exploration which include the origin and evolution of the solar system and its planets, disastrous impact on the Earth by the solar activities and small bodies, extraterrestrial life, this paper put forward a propose about the roadmap and scientific objectives of China's Deep-space Exploration before 2030.展开更多
Four future missions for deep space exploration and future space-based exoplanet surveys on habitable planets by 2030 are scheduled to be launched.Two Mars exploration missions are designed to investigate geological s...Four future missions for deep space exploration and future space-based exoplanet surveys on habitable planets by 2030 are scheduled to be launched.Two Mars exploration missions are designed to investigate geological structure,the material on Martian surface,and retrieve returned samples.The asteroids and main belt comet exploration is expected to explore two objects within 10 years.The small-body mission will aim to land on the asteroid and get samples return to Earth.The basic physical characteristics of the two objects will be obtained through the mission.The exploration of Jupiter system will characterize the environment of Jupiter and the four largest Moons and understand the atmosphere of Jupiter.In addition,we further introduce two space-based exoplanet survey by 2030,Miyin Program and Closeby Habitable Exoplanet Survey(CHES Mission).Miyin program aims to detect habitable exoplanets using interferometry,while CHES mission expects to discover habitable exoplanets orbiting FGK stars within 10 pc through astrometry.The above-mentioned missions are positively to achieve breakthroughs in the field of planetary science.展开更多
The deepwater area of southern Qiongdongnan Basin is a hydrocarbon exploration frontier and mainly located on the continental slope in the northwestern South China Sea.Its tectonic and depositional evolution is simila...The deepwater area of southern Qiongdongnan Basin is a hydrocarbon exploration frontier and mainly located on the continental slope in the northwestern South China Sea.Its tectonic and depositional evolution is similar to the typical marginal deepwater areas abroad where oils have been discovered.Favorable hydrocarbon conditions in this area are as follows:(1) three sets of source rocks (including lacustrine mudstone of Eocene,coastal plain coal-bearing strata and semi-closed shallow sea mudstone of Oligocene,and marine mudstone展开更多
Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellite...Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellites were successfully launched in 2010 and 2013, respectively. In order to achieve the science objectives, various payloads boarded the spacecraft. The scientific data from these instruments were received by Beijing and Kunming ground stations simultaneously. Up to now, about 5.628 Terabytes of raw data were received totally. A series of research results has been achieved. This paper presents a brief introduction to the main scientific results and latest progress from Chang'E-3 mission.展开更多
China’s first Mars exploration mission is scheduled to be launched in 2020.It aims not only to conduct global and comprehensive exploration of Mars by use of an orbiter but also to carry out in situ observation of ke...China’s first Mars exploration mission is scheduled to be launched in 2020.It aims not only to conduct global and comprehensive exploration of Mars by use of an orbiter but also to carry out in situ observation of key sites on Mars with a rover.This mission focuses on the following studies:topography,geomorphology,geological structure,soil characteristics,water-ice distribution,material composition,atmosphere and ionosphere,surface climate,environmental characteristics,Mars internal structure,and Martian magnetic field.It is comprised of an orbiter,a lander,and a rover equipped with 13 scientific payloads.This article will give an introduction to the mission including mission plan,scientific objectives,scientific payloads,and its recent development progress.展开更多
For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data repre...For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data represents one of the cheapest forms of large-scale geophysical exploration.With the identification of potential fields,we can get the map of worms or skeletonizations showing the three-dimension structure of shallow crust,and find the展开更多
For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data repre...For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data represents one of the cheapest ways of large-scale geophysical exploration.With the identification of potential mineral fields,we can get the map of worms or skeletonizations showing展开更多
A combination of mineralogical and multielement analyses was used to characterize the hydrothermal alteration,pathfinder elements and their distribution within the gold deposits in North Mara mines,the Archean Musoma-...A combination of mineralogical and multielement analyses was used to characterize the hydrothermal alteration,pathfinder elements and their distribution within the gold deposits in North Mara mines,the Archean Musoma-Mara greenstone belt,Tanzania. The aim was to evaluate the suitability of alteration mineral assemblages and composition as an effective exploration marker for fingerprinting展开更多
Qiangtang basin The north margin of the Qiangtang Basin, which located at the north Tibet region,is Lazhulong\|Xijinwulan (also named Jinshajiang River) suture zone (connect zone), and the south margin is Bangong Lake...Qiangtang basin The north margin of the Qiangtang Basin, which located at the north Tibet region,is Lazhulong\|Xijinwulan (also named Jinshajiang River) suture zone (connect zone), and the south margin is Bangong Lake—Dingqing (Nujiang River) suture zone (connect zone). The West End of the basin is gradually convergent at the West Side from Duoma about 80°meridian, and the East End may reach Muta area at about 95°meridian. According to the Jurassic strata development, the basin could be divided into three parts such the north Qiangtang depression, the Central uplift and the south Qiangtang depression as the first\|order tectonic unit. The direction of marine transgression is from the south of the basin to the north. The Jurassic strata of the basin are mainly marine sediments. The hydrocarbon source rocks occurred in Buqu Formation of the middle Jurassic and Suowa Formation of the upper Jurassic are of important potential for oil & gas exploration, and the hydrocarbon source rock in Quse Formation of the lower Jurassic for this is secondary due to localized distribution in the basin.展开更多
A new method in making judgment matrix is proposed based on a basic value of “importance” and a relative measure level of “importance”. Factors affecting petroleum exploration are analyzed and Experts’ judgment m...A new method in making judgment matrix is proposed based on a basic value of “importance” and a relative measure level of “importance”. Factors affecting petroleum exploration are analyzed and Experts’ judgment matrix on a geologic formation is given. Expected value of each factor is computed and the volume of recoverable oil is estimated.展开更多
The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling sola...The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling solar activities and driving space weather.Despite numerous efforts to explore these regions,to date no imaging observations of the Sun's poles have been achieved from vantage points out of the ecliptic plane,leaving their behavior and evolution poorly understood.This observation gap has left three top-level scientific questions unanswered:How does the solar dynamo work and drive the solar magnetic cycle?What drives the fast solar wind?How do space weather processes globally originate from the Sun and propagate throughout the solar system?The Solar Polarorbit Observatory(SPO)mission,a solar polar exploration spacecraft,is proposed to address these three unanswered scientific questions by imaging the Sun's poles from high heliolatitudes.In order to achieve its scientific goals,SPO will carry six remote-sensing and four in-situ instruments to measure the vector magnetic fields and Doppler velocity fields in the photosphere,to observe the Sun in the extreme ultraviolet,X-ray,and radio wavelengths,to image the corona and the heliosphere up to 45 R_(s),and to perform in-situ detection of magnetic fields,and low-and high-energy particles in the solar wind.The SPO mission is capable of providing critical vector magnetic fields and Doppler velocities of the polar regions to advance our understanding of the origin of the solar magnetic cycle,providing unprecedented imaging observations of the solar poles alongside in-situ measurements of charged particles and magnetic fields from high heliolatitudes to unveil the mass and energy supply that drive the fast solar wind,and providing observational constraints for improving our ability to model and predict the three-dimensional(3D)structures and propagation of space weather events.展开更多
Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from...Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from observing phenomena to uncovering underlying mechanisms,from regional-scale investigations to global perspectives,and from experience-based inference toward data-and model-enabled intelligent prediction.AlphaEarth Foundations(AEF)is a next-generation geospatial intelligence platform that addresses these changes by introducing a unified 64-dimensional shared embedding space,enabling-for the first time-standardized representation and seamless integration of 12 distinct types of Earth observation data,including optical,radar,and lidar.This framework significantly improves data assimilation efficiency and resolves the persistent problem of“data silos”in geoscience research.AEF is helping redefine research methodologies and fostering breakthroughs,particularly in quantitative Earth system science.This paper systematically examines how AEF’s innovative architecture-featuring multi-source data fusion,high-dimensional feature representation learning,and a scalable computational framework-facilitates intelligent,precise,and realtime data-driven geoscientific research.Using case studies from resource and environmental applications,we demonstrate AEF’s broad potential and identify emerging innovation needs.Our findings show that AEF not only enhances the efficiency of solving traditional geoscientific problems but also stimulates novel research directions and methodological approaches.展开更多
In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of sci...In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of scientific instruments on board.The system design of Queqiao-2,including mission orbit and transfer orbit design,configuration and layout design,housekeeping and information flow design,power supply and distribution design,GNC and propulsion system design,communication links design,etc.,was accomplished through comprehensive tradeoff and evaluation on technical maturity,availability,schedule,cost,and so on.With a view to reducing development risk,both the platform and relay communication payloads were developed based on significant heritage from previous Queqiao relay satellite and other relevant spacecraft.Queqiao-2 features flexible system architecture to support multiple frequencies,modulations,data rates and software reconfigurations to meet new user requirements.Subsequent to a successful launch on March 20,2024,by means of 5 orbit maneuvers,Queqiao-2 was inserted into a highly elliptical frozen mission orbit around the moon with a 24h period on schedule.Following on-orbit tests and calibrations,Queqiao-2 has possessed the capacity to provide reliable relay communication services to multiple lunar exploration missions,as well as the capacity to perform scientific observations.Under the support of Queqiao-2,Chang′e-6 achieved its ambitious mission goal to collect and return samples from the moon′s mysterious far side.In the meanwhile,Queqiao-2 has also paved the way for the following Chinese lunar exploration missions including Chang′e-7 and Chang′e-8.The design life time of Queqiao-2 is more than 8 years.Benefit from flexibility and extensibility of relay communication system design,it is convenient to provide relay communication services for future lunar exploration missions of both China and other countries.In addition,innovative scientific observations would be performed during the period that no relay communication task is arranged.The system design of Queqiao-2 reflects the development philosophy of technical innovations and inheritance integration.Based on highly flexible and extensible system architecture,multiple and concurrent relay communication mission requirements can be met.It can provide strong supports for future lunar exploration missions.Successful launching,orbit entering and on-orbit tests of Queqiao-2 verified the correct design principle and versatility.By means of Queqiao-2,more innovative scientific outcomes are anticipated and lunar exploration activities can be facilitated.展开更多
Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explo...Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.展开更多
基金Project(2001CB409809) supported by the National Key Foundmental Research and Development Program of Chinaproject(1042610) supported by the Key Program of the Education Ministry of China
文摘Prediction has become more and more difficult in mineral exploration, especially in the mature exploration environment such as Tongling copper district. For enhancing predictive discovery of hidden ore deposits in such mature environment, the key strategies which should be adopted include the innovation of the exploration models, application of the advanced exploration techniques and integration of multiple sets of information. The innovation of the exploration models should incorporate the new metallogenic concepts that are based on the geodynamic anatomization. The advanced techniques applied in the mature exploration environment should aim at the speciality and complexity of the geological setting and working environments. The information synthesis is to integrate multiple sets of data for giving a more credible and visual prospectivity map by using the geographic imformation system(GIS) and several mathematical methods, such as weight of evidence and fuzzy logic, which can extract useful information from every set of data as much as possible. Guided by these strategies, a predictive exploration in Fenghuangshan ore field of Tongling copper district was implemented, and a hidden ore deposit was discovered.
文摘China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of the Moon in human history.Chang'E-5 was launched in December 2020,bringing back 1731 g of lunar soil samples.Through the detailed analysis of the samples,the scientists understand the history of late lunar volcanism,specifically extending lunar volcanism by about 800 million to 1 billion years,and proposed possible mechanisms.In addition,there are many new understandings of space weathering such as meteorite impacts and solar wind radiation on the Moon.China's first Mars exploration mission Tianwen-1 was successfully launched in July 2021.Through the study of scientific data,a number of important scientific achievements have been made in the topography,water environment and shallow surface structure of Mars.This paper introduces the main scientific achievements of Chang'E-4,Chang'E-5 and Tianwen-1 in the past two years,excluding technical and engineering contents.Due to the large number of articles involved,this paper only introduces part of the results.
基金Supported by National Key R&D Program of China(2020YFE0202100)Beijing Municipal Science and Technology Commission(Z181100002918003)。
文摘China has carried out four unmanned missions to the Moon since it launched Chang’E-1,the first lunar orbiter in 2007.With the implementation of the Chang’E-5 mission this year,the three phases of the lunar exploration program,namely orbiting,landing and returning,have been completed.In the plan of follow-up unmanned lunar exploration missions,it is planned to establish an experimental lunar research station at the lunar south pole by 2030 through the implementation of several missions,laying a foundation for the establishment of practical lunar research station in the future.China successfully launched its first Mars probe on 23 July 2020,followed in future by an asteroid mission,second Mars mission,and a mission to explore Jupiter and its moons.
文摘Space environment exploration is a hot topic globally.The scope of space exploration ranges from near-Earth space to the moon,other planets in the solar system,and even the heliosphere and interplanetary space.It is used for various crucial applications,including aerospace technology development,space weather research,understanding the origin and evolution of the universe,searching for extraterrestrial life,and finding human livable places.Although China’s space environment exploration started late,its progress has been rapid.China is gradually narrowing the gap with advanced countries and may eventually lead the world in space research.This article briefly reviews the development history of China’s space environmental detectors.
文摘Focusing on the key scientific questions of deep space exploration which include the origin and evolution of the solar system and its planets, disastrous impact on the Earth by the solar activities and small bodies, extraterrestrial life, this paper put forward a propose about the roadmap and scientific objectives of China's Deep-space Exploration before 2030.
基金Supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(XDB41000000)the National Natural Science Foundation of China(11773081,11573073)CAS Interdisciplinary Innovation Team,Foundation of Minor Planets of the Purple Mountain Observatory and Youth Innovation Promotion Association。
文摘Four future missions for deep space exploration and future space-based exoplanet surveys on habitable planets by 2030 are scheduled to be launched.Two Mars exploration missions are designed to investigate geological structure,the material on Martian surface,and retrieve returned samples.The asteroids and main belt comet exploration is expected to explore two objects within 10 years.The small-body mission will aim to land on the asteroid and get samples return to Earth.The basic physical characteristics of the two objects will be obtained through the mission.The exploration of Jupiter system will characterize the environment of Jupiter and the four largest Moons and understand the atmosphere of Jupiter.In addition,we further introduce two space-based exoplanet survey by 2030,Miyin Program and Closeby Habitable Exoplanet Survey(CHES Mission).Miyin program aims to detect habitable exoplanets using interferometry,while CHES mission expects to discover habitable exoplanets orbiting FGK stars within 10 pc through astrometry.The above-mentioned missions are positively to achieve breakthroughs in the field of planetary science.
文摘The deepwater area of southern Qiongdongnan Basin is a hydrocarbon exploration frontier and mainly located on the continental slope in the northwestern South China Sea.Its tectonic and depositional evolution is similar to the typical marginal deepwater areas abroad where oils have been discovered.Favorable hydrocarbon conditions in this area are as follows:(1) three sets of source rocks (including lacustrine mudstone of Eocene,coastal plain coal-bearing strata and semi-closed shallow sea mudstone of Oligocene,and marine mudstone
基金Supported by the NSFC under Grant(41073053)the Key Research Program of the Chinese Academy of Sciencesunder Grant(KGZD-EW-603)
文摘Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellites were successfully launched in 2010 and 2013, respectively. In order to achieve the science objectives, various payloads boarded the spacecraft. The scientific data from these instruments were received by Beijing and Kunming ground stations simultaneously. Up to now, about 5.628 Terabytes of raw data were received totally. A series of research results has been achieved. This paper presents a brief introduction to the main scientific results and latest progress from Chang'E-3 mission.
基金Supported by the Major Program of the National Science Foundation of China(41590851)the Beijing Municipal Science and Technology Commission(Z181100002918003)。
文摘China’s first Mars exploration mission is scheduled to be launched in 2020.It aims not only to conduct global and comprehensive exploration of Mars by use of an orbiter but also to carry out in situ observation of key sites on Mars with a rover.This mission focuses on the following studies:topography,geomorphology,geological structure,soil characteristics,water-ice distribution,material composition,atmosphere and ionosphere,surface climate,environmental characteristics,Mars internal structure,and Martian magnetic field.It is comprised of an orbiter,a lander,and a rover equipped with 13 scientific payloads.This article will give an introduction to the mission including mission plan,scientific objectives,scientific payloads,and its recent development progress.
文摘For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data represents one of the cheapest forms of large-scale geophysical exploration.With the identification of potential fields,we can get the map of worms or skeletonizations showing the three-dimension structure of shallow crust,and find the
文摘For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data represents one of the cheapest ways of large-scale geophysical exploration.With the identification of potential mineral fields,we can get the map of worms or skeletonizations showing
文摘A combination of mineralogical and multielement analyses was used to characterize the hydrothermal alteration,pathfinder elements and their distribution within the gold deposits in North Mara mines,the Archean Musoma-Mara greenstone belt,Tanzania. The aim was to evaluate the suitability of alteration mineral assemblages and composition as an effective exploration marker for fingerprinting
文摘Qiangtang basin The north margin of the Qiangtang Basin, which located at the north Tibet region,is Lazhulong\|Xijinwulan (also named Jinshajiang River) suture zone (connect zone), and the south margin is Bangong Lake—Dingqing (Nujiang River) suture zone (connect zone). The West End of the basin is gradually convergent at the West Side from Duoma about 80°meridian, and the East End may reach Muta area at about 95°meridian. According to the Jurassic strata development, the basin could be divided into three parts such the north Qiangtang depression, the Central uplift and the south Qiangtang depression as the first\|order tectonic unit. The direction of marine transgression is from the south of the basin to the north. The Jurassic strata of the basin are mainly marine sediments. The hydrocarbon source rocks occurred in Buqu Formation of the middle Jurassic and Suowa Formation of the upper Jurassic are of important potential for oil & gas exploration, and the hydrocarbon source rock in Quse Formation of the lower Jurassic for this is secondary due to localized distribution in the basin.
文摘A new method in making judgment matrix is proposed based on a basic value of “importance” and a relative measure level of “importance”. Factors affecting petroleum exploration are analyzed and Experts’ judgment matrix on a geologic formation is given. Expected value of each factor is computed and the volume of recoverable oil is estimated.
文摘The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling solar activities and driving space weather.Despite numerous efforts to explore these regions,to date no imaging observations of the Sun's poles have been achieved from vantage points out of the ecliptic plane,leaving their behavior and evolution poorly understood.This observation gap has left three top-level scientific questions unanswered:How does the solar dynamo work and drive the solar magnetic cycle?What drives the fast solar wind?How do space weather processes globally originate from the Sun and propagate throughout the solar system?The Solar Polarorbit Observatory(SPO)mission,a solar polar exploration spacecraft,is proposed to address these three unanswered scientific questions by imaging the Sun's poles from high heliolatitudes.In order to achieve its scientific goals,SPO will carry six remote-sensing and four in-situ instruments to measure the vector magnetic fields and Doppler velocity fields in the photosphere,to observe the Sun in the extreme ultraviolet,X-ray,and radio wavelengths,to image the corona and the heliosphere up to 45 R_(s),and to perform in-situ detection of magnetic fields,and low-and high-energy particles in the solar wind.The SPO mission is capable of providing critical vector magnetic fields and Doppler velocities of the polar regions to advance our understanding of the origin of the solar magnetic cycle,providing unprecedented imaging observations of the solar poles alongside in-situ measurements of charged particles and magnetic fields from high heliolatitudes to unveil the mass and energy supply that drive the fast solar wind,and providing observational constraints for improving our ability to model and predict the three-dimensional(3D)structures and propagation of space weather events.
基金National Natural Science Foundation of China Key Project(No.42050103)Higher Education Disciplinary Innovation Program(No.B25052)+2 种基金the Guangdong Pearl River Talent Program Innovative and Entrepreneurial Team Project(No.2021ZT09H399)the Ministry of Education’s Frontiers Science Center for Deep-Time Digital Earth(DDE)(No.2652023001)Geological Survey Project of China Geological Survey(DD20240206201)。
文摘Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from observing phenomena to uncovering underlying mechanisms,from regional-scale investigations to global perspectives,and from experience-based inference toward data-and model-enabled intelligent prediction.AlphaEarth Foundations(AEF)is a next-generation geospatial intelligence platform that addresses these changes by introducing a unified 64-dimensional shared embedding space,enabling-for the first time-standardized representation and seamless integration of 12 distinct types of Earth observation data,including optical,radar,and lidar.This framework significantly improves data assimilation efficiency and resolves the persistent problem of“data silos”in geoscience research.AEF is helping redefine research methodologies and fostering breakthroughs,particularly in quantitative Earth system science.This paper systematically examines how AEF’s innovative architecture-featuring multi-source data fusion,high-dimensional feature representation learning,and a scalable computational framework-facilitates intelligent,precise,and realtime data-driven geoscientific research.Using case studies from resource and environmental applications,we demonstrate AEF’s broad potential and identify emerging innovation needs.Our findings show that AEF not only enhances the efficiency of solving traditional geoscientific problems but also stimulates novel research directions and methodological approaches.
文摘In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of scientific instruments on board.The system design of Queqiao-2,including mission orbit and transfer orbit design,configuration and layout design,housekeeping and information flow design,power supply and distribution design,GNC and propulsion system design,communication links design,etc.,was accomplished through comprehensive tradeoff and evaluation on technical maturity,availability,schedule,cost,and so on.With a view to reducing development risk,both the platform and relay communication payloads were developed based on significant heritage from previous Queqiao relay satellite and other relevant spacecraft.Queqiao-2 features flexible system architecture to support multiple frequencies,modulations,data rates and software reconfigurations to meet new user requirements.Subsequent to a successful launch on March 20,2024,by means of 5 orbit maneuvers,Queqiao-2 was inserted into a highly elliptical frozen mission orbit around the moon with a 24h period on schedule.Following on-orbit tests and calibrations,Queqiao-2 has possessed the capacity to provide reliable relay communication services to multiple lunar exploration missions,as well as the capacity to perform scientific observations.Under the support of Queqiao-2,Chang′e-6 achieved its ambitious mission goal to collect and return samples from the moon′s mysterious far side.In the meanwhile,Queqiao-2 has also paved the way for the following Chinese lunar exploration missions including Chang′e-7 and Chang′e-8.The design life time of Queqiao-2 is more than 8 years.Benefit from flexibility and extensibility of relay communication system design,it is convenient to provide relay communication services for future lunar exploration missions of both China and other countries.In addition,innovative scientific observations would be performed during the period that no relay communication task is arranged.The system design of Queqiao-2 reflects the development philosophy of technical innovations and inheritance integration.Based on highly flexible and extensible system architecture,multiple and concurrent relay communication mission requirements can be met.It can provide strong supports for future lunar exploration missions.Successful launching,orbit entering and on-orbit tests of Queqiao-2 verified the correct design principle and versatility.By means of Queqiao-2,more innovative scientific outcomes are anticipated and lunar exploration activities can be facilitated.
基金Supported by Consultation and Evaluation Program on Academic Divisions of the Chinese Academy of Sciences(2022-DX02-B-007)。
文摘Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.