We present a realistic scheme for the entanglement swapping of continuous variable, in which a two-mode squeezed vacuum state serves as a quantum channel. The position sum and momentum difference of two local modes ar...We present a realistic scheme for the entanglement swapping of continuous variable, in which a two-mode squeezed vacuum state serves as a quantum channel. The position sum and momentum difference of two local modes are measured. By taking the input entangled state also as a two-mode squeezed vacuum state, we investigate the average fidelity and the yon Neumann entropy of the output state. The results show that the perfect teleportation can be achieved by increasing the squeezing of the quantum channel and that any nonzero squeezing in both the quantum channel and the input entangled state is sufficient to swap the entanglement.展开更多
In this paper security of the quantum key distribution scheme using correlations of continuous variable Einstein- Podolsky-Rosen (EPR) pairs is investigated. A new approach for calculating the secret information ra...In this paper security of the quantum key distribution scheme using correlations of continuous variable Einstein- Podolsky-Rosen (EPR) pairs is investigated. A new approach for calculating the secret information rate △I is proposed by using the Shannon information theory. Employing an available parameter F which is associated with the entanglement of the EPR pairs, one can detect easily the eavesdropping. Results show that the proposed scheme is secure against individual bearn splitter attack strategy with a proper squeeze parameter.展开更多
The fidelity of quantum teleportation of a single-mode squeezed state of light is calculated based on the general theory of quantum-mechanical measurement in the Schrodinger picture. It is shown that the criterion for...The fidelity of quantum teleportation of a single-mode squeezed state of light is calculated based on the general theory of quantum-mechanical measurement in the Schrodinger picture. It is shown that the criterion for the nonclassical state teleportation is different from that for coherent state. F = 1/2 is no longer the rigorous boundary between classical and quantum teleportation for a squeezed state of light. When the quantum entanglement of an Einstein-Podolsky-Rosen (EPR) beam used for teleportation and the parameters of the system are given, the fidelity depends on the squeezing of the input squeezed state. The higher the squeezing is, the smaller the fidelity is, and the lower the classical limitation of fidelity is. The dependence of the optimum gain for teleporting a squeezed vacuum state upon the EPR entanglement is also calculated. The results obtained provide important references for designing experimental systems of teleporting a non-classical state and judging the quality of the teleported quantum state.展开更多
We investigate the design of anonymous voting protocols,CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables(CV) in a multi-dimensional quantum cryptosystem to ensure the security...We investigate the design of anonymous voting protocols,CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables(CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy.The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission,which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states.It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security,especially in large-scale votes.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 20477043).
文摘We present a realistic scheme for the entanglement swapping of continuous variable, in which a two-mode squeezed vacuum state serves as a quantum channel. The position sum and momentum difference of two local modes are measured. By taking the input entangled state also as a two-mode squeezed vacuum state, we investigate the average fidelity and the yon Neumann entropy of the output state. The results show that the perfect teleportation can be achieved by increasing the squeezing of the quantum channel and that any nonzero squeezing in both the quantum channel and the input entangled state is sufficient to swap the entanglement.
基金Project supported by the National Natural Science Foundation of China (Grant No 60472018).
文摘In this paper security of the quantum key distribution scheme using correlations of continuous variable Einstein- Podolsky-Rosen (EPR) pairs is investigated. A new approach for calculating the secret information rate △I is proposed by using the Shannon information theory. Employing an available parameter F which is associated with the entanglement of the EPR pairs, one can detect easily the eavesdropping. Results show that the proposed scheme is secure against individual bearn splitter attack strategy with a proper squeeze parameter.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60278010, 60238010, and 60478808, the Shanxi Natural Science Foundation under Grant No 20041039, and the Returned Scholar Foundation.
文摘The fidelity of quantum teleportation of a single-mode squeezed state of light is calculated based on the general theory of quantum-mechanical measurement in the Schrodinger picture. It is shown that the criterion for the nonclassical state teleportation is different from that for coherent state. F = 1/2 is no longer the rigorous boundary between classical and quantum teleportation for a squeezed state of light. When the quantum entanglement of an Einstein-Podolsky-Rosen (EPR) beam used for teleportation and the parameters of the system are given, the fidelity depends on the squeezing of the input squeezed state. The higher the squeezing is, the smaller the fidelity is, and the lower the classical limitation of fidelity is. The dependence of the optimum gain for teleporting a squeezed vacuum state upon the EPR entanglement is also calculated. The results obtained provide important references for designing experimental systems of teleporting a non-classical state and judging the quality of the teleported quantum state.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61272495,61379153,and 61401519)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130162110012)the MEST-NRF of Korea(Grant No.2012-002521)
文摘We investigate the design of anonymous voting protocols,CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables(CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy.The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission,which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states.It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security,especially in large-scale votes.