期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Transformer构架的海气耦合智能模型对ENSO的预测及订正
1
作者
马天翼
智海
+1 位作者
张荣华
周路
《海洋学报》
北大核心
2025年第6期33-46,共14页
厄尔尼诺-南方涛动(El Niño-Southern Oscillation,ENSO)作为气候系统中最强的年际变率信号,可对全球的天气和气候产生重要的影响。在全球变暖下,ENSO的演变愈发呈现出复杂、多样的特征,其模拟与预测已成为气候领域极具挑战性的课...
厄尔尼诺-南方涛动(El Niño-Southern Oscillation,ENSO)作为气候系统中最强的年际变率信号,可对全球的天气和气候产生重要的影响。在全球变暖下,ENSO的演变愈发呈现出复杂、多样的特征,其模拟与预测已成为气候领域极具挑战性的课题。本研究引入基于Transformer架构开发的热带海气系统多变量智能预测模型——3D-Geoformer,开展ENSO预测的误差分析及订正研究。3DGeoformer模型不同于多数智能模型的仅对ENSO相关的单变量场或时间序列进行预测,实现了对热带太平洋海气系统多变量三维场的准确表征和预测,保证了ENSO预测所需物理过程的完整性。同时,本文针对3D-Geoformer模型在ENSO中存在的春季预测技巧低、赤道西太平洋海表温度(SST)预测能力较弱和极端ENSO事件预测强度偏低等问题,提出了基于经验正交分解(EOF)的季节预测误差订正技术,并应用于对3D-Geoformer预测结果的订正检验。在订正关系构建阶段,通过对1983-2009年的多变量预测场和预测误差场进行EOF分析,构建二者主成分序列间的线性关系,并用于后续误差订正。在测试阶段,利用预测场的EOF主成分系数以及与误差场主成分的线性关系,便可算出对应的预测误差场主成分,进而得到预测误差场和校正的预测场。结果显示,使用3D-Geoformer模型对赤道西太平洋海表温度预测时,预测误差在0.15℃以下;赤道中东太平洋SST预测误差缩减46.7%。通过比较EOF订正前后的3D-Geoformer模型对赤道太平洋SST预测结果的异常相关系数(ACC)的差值,结果发现,ACC的差值均有正值区,表明经过EOF订正后的模型预测准确度提高,且优化了3D-Geoformer模型在训练过程中使用第6次耦合模式比较计划(CMIP6)的气候模式数据引起的“冷舌偏差”问题。模型对提前12个月对2015-2016年El Ni?o的预测订正结果显示,赤道西太平洋地区SST误差控制在0.5℃以内,赤道东太平洋SST预测误差减小约75%,误差范围缩至±0.5℃以内。本研究揭示了基于EOF分解的季节预测误差订正方法在改善模式预测中的应用价值,为进一步提高智能模型预测ENSO的精度提供了新方法,也为地球科学领域相关的模拟预测、误差分析研究提供了新思路。
展开更多
关键词
ENSO预测
eof统计订正
TRANSFORMER
3D-G
eof
ormer
在线阅读
下载PDF
职称材料
题名
基于Transformer构架的海气耦合智能模型对ENSO的预测及订正
1
作者
马天翼
智海
张荣华
周路
机构
南京信息工程大学大气科学学院
南京信息工程大学海洋科学学院
出处
《海洋学报》
北大核心
2025年第6期33-46,共14页
基金
崂山实验室科技创新项目(LSKJ202202403,LSKJ202202402)
国家自然科学基金项目(42030410)。
文摘
厄尔尼诺-南方涛动(El Niño-Southern Oscillation,ENSO)作为气候系统中最强的年际变率信号,可对全球的天气和气候产生重要的影响。在全球变暖下,ENSO的演变愈发呈现出复杂、多样的特征,其模拟与预测已成为气候领域极具挑战性的课题。本研究引入基于Transformer架构开发的热带海气系统多变量智能预测模型——3D-Geoformer,开展ENSO预测的误差分析及订正研究。3DGeoformer模型不同于多数智能模型的仅对ENSO相关的单变量场或时间序列进行预测,实现了对热带太平洋海气系统多变量三维场的准确表征和预测,保证了ENSO预测所需物理过程的完整性。同时,本文针对3D-Geoformer模型在ENSO中存在的春季预测技巧低、赤道西太平洋海表温度(SST)预测能力较弱和极端ENSO事件预测强度偏低等问题,提出了基于经验正交分解(EOF)的季节预测误差订正技术,并应用于对3D-Geoformer预测结果的订正检验。在订正关系构建阶段,通过对1983-2009年的多变量预测场和预测误差场进行EOF分析,构建二者主成分序列间的线性关系,并用于后续误差订正。在测试阶段,利用预测场的EOF主成分系数以及与误差场主成分的线性关系,便可算出对应的预测误差场主成分,进而得到预测误差场和校正的预测场。结果显示,使用3D-Geoformer模型对赤道西太平洋海表温度预测时,预测误差在0.15℃以下;赤道中东太平洋SST预测误差缩减46.7%。通过比较EOF订正前后的3D-Geoformer模型对赤道太平洋SST预测结果的异常相关系数(ACC)的差值,结果发现,ACC的差值均有正值区,表明经过EOF订正后的模型预测准确度提高,且优化了3D-Geoformer模型在训练过程中使用第6次耦合模式比较计划(CMIP6)的气候模式数据引起的“冷舌偏差”问题。模型对提前12个月对2015-2016年El Ni?o的预测订正结果显示,赤道西太平洋地区SST误差控制在0.5℃以内,赤道东太平洋SST预测误差减小约75%,误差范围缩至±0.5℃以内。本研究揭示了基于EOF分解的季节预测误差订正方法在改善模式预测中的应用价值,为进一步提高智能模型预测ENSO的精度提供了新方法,也为地球科学领域相关的模拟预测、误差分析研究提供了新思路。
关键词
ENSO预测
eof统计订正
TRANSFORMER
3D-G
eof
ormer
Keywords
ENSO forecast
statistical revision of
eof
Transformer
3D-G
eof
ormer
分类号
P732 [天文地球—海洋科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Transformer构架的海气耦合智能模型对ENSO的预测及订正
马天翼
智海
张荣华
周路
《海洋学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部