期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Low-value biomass-derived carbon composites for electromagnetic wave absorption and shielding: A review
1
作者 Sumanta Sahoo Rajesh Kumar Sung Soo Han 《新型炭材料(中英文)》 北大核心 2025年第2期293-316,共24页
The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face... The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face area and high porosity have been investigated. Compared to other car-bon materials, biomass-derived carbon (BC) are considered efficient and eco-friendly materials for this purpose. We summarize the recent advances in BC materials for both EMI shielding and EM wave absorption. After a brief overview of the synthesis strategies of BC materials and a precise out-line of EM wave interference, strategies for improving their EMI shielding and EM wave absorption are discussed. Finally, the existing challenges and the future prospects for such materials are briefly summarized. 展开更多
关键词 Biomass carbon COMPOSITES Dielectric loss emi shielding EM wave absorption
在线阅读 下载PDF
A shield of defense:Developing ballistic composite panels with effective electromagnetic interference shielding absorption
2
作者 Nisrin Rizek Abdelal 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期123-136,共14页
The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference(EMI)shielding capabilities through a... The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference(EMI)shielding capabilities through absorption.Six fiber-reinforced epoxy composite panels,each with a different fabric material and stacking sequence,have been fabricated using a hand-layup vacuum bagging process.Two panels made of Kevlar and glass fibers,referred to as(K-NIJ)and(G-NIJ),have been tested according to the National Institute of Justice ballistic resistance protective materials test NIJ 0108.01 Standard-Level IIIA(9 mm×19 mm FMJ 124 g)test.Three panels,namely,a hybrid of Kevlar and glass(H-S),glass with ceramic particles(C-S),and glass with recycled rubber(R-S)have been impacted by the bullet at the center,while the fourth panel made of glass fiber(G-S)has been impacted at the side.EMI shielding properties have been measured in the X-band frequency range via the reflection-transmission method.Results indicate that four panels(K-NIJ,G-NIJ,H-S,and G-S)are capable of withstanding high-velocity impact by stopping the bullet from penetrating through the panels while maintaining their structural integrity.However,under such conditions,these panels may experience localized delamination with variable severity.The EMI measurements reveal that the highest absorptivity observed is 88% for the KNIJ panel at 10.8 GHz,while all panels maintain an average absorptivity above 65%.All panels act as a lossy medium with a peak absorptivity at different frequencies,with K-NIJ and H-S panels demonstrating the highest absorptivity.In summary,the study results in the development of a novel,costeffective,multifunctional glass fiber epoxy composite that combines ballistic and electromagnetic interference shielding properties.The material has been developed using a simple manufacturing method and exhibits remarkable ballistic protection that outperforms Kevlar in terms of shielding efficiency;no bullet penetration or back face signature is observed,and it also demonstrates high EMI shielding absorption.Overall,the materials developed show great promise for various applications,including the military and defense. 展开更多
关键词 BALLISTIC FRP composite emi shielding ABSORPTIVITY CT-SCAN NIJ test BULLET DEFENSE
在线阅读 下载PDF
Fabrication of combustion pyrotechnics for laser and electromagnetic interference shielding
3
作者 Yuan-yuan Yao Shao-hua Jin +4 位作者 Jing Huang Dong-ze Li Bo-lin Xu Xi-juan Lv Qing-hai Shu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期140-147,共8页
The contradiction between flammability and packing density is the technical bottleneck for combustible smoke agent.Herein,polyurethane(PU)foams with flammability and resilience were prepared with polyol and isocyanate... The contradiction between flammability and packing density is the technical bottleneck for combustible smoke agent.Herein,polyurethane(PU)foams with flammability and resilience were prepared with polyol and isocyanate as raw materials by chemical foaming method,then compounded with metal powders,polytetrafluoroethylene(PTFE),phthalic annychide(PA),etc.in a certain proportion and pressed into pyrotechnic grain to obtain eco-friendly combustion aerosols with compact density of about1.15 g/cm^(3).The resulting combustion smoke agent combined the advantages of PU foam and pyrotechnic with easy ignition,large smoke production,long duration and low environmental pollution.The transmittance of aerosols for 532 nm and 1064 nm lasers was close to 0,and the EMI SE reached up to65 d B and 35 d B in GPS band and X band,respectively.In addition,the resulting pyrotechnic grains exhibited good mechanical strength and elasticity for sample 1:25,with a compressive strength of22 MPa and an elastic modulus of 195 MPa.The resulting combustion smoke agent is expected to play a potential role in the field of electromagnetic damage and protection. 展开更多
关键词 Smoke agent FLAMMABILITY PU foam Laser masking emi shielding
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部