期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
融合EMD与GAIPSO-LSTM算法的锂离子电池RUL预测方法研究
1
作者 张俊贤 周英超 +3 位作者 李波 薛博峰 蒙心蕊 陈培震 《重庆理工大学学报(自然科学)》 北大核心 2025年第6期28-36,共9页
为提高锂离子电池RUL预测精度,提出一种将经验模态分解(EMD)、遗传算法混合改进粒子群优化算法(GAIPSO)以及长短期记忆(LSTM)神经网络结合的锂离子电池RUL预测模型。通过EMD对数据进行分解,结合Logistic混沌映射、自适应惯性权重、改进... 为提高锂离子电池RUL预测精度,提出一种将经验模态分解(EMD)、遗传算法混合改进粒子群优化算法(GAIPSO)以及长短期记忆(LSTM)神经网络结合的锂离子电池RUL预测模型。通过EMD对数据进行分解,结合Logistic混沌映射、自适应惯性权重、改进的速度更新公式,以及遗传算法中的选择、交叉和高斯变异操作,优化粒子群算法,利用改进后的GAIPSO算法对LSTM模型的参数进行优化,使用EMD-GAIPSO-LSTM预测模型对电池寿命进行预测,通过NASA发布的数据集进行模型预测精度验证。结果表明:该模型预测结果的平均绝对误差(mean absolute error,MAE)、均方根差(root mean square error,RMSE)分别在0.01204与0.01372以内,R^(2)在0.9791以上。相比于SSA-LSTM和PSO-LSTM模型,预测精度提高4.7%和2.5%,证明该模型对锂离子电池RUL预测准确性较高。 展开更多
关键词 锂离子电池 剩余使用寿命 emd分解 遗传算法混合改进粒子群算法 长短期记忆神经网络
在线阅读 下载PDF
基于改进麻雀算法优化变分时域分解的往复机械冲击特征提取方法
2
作者 聂志勇 隋立林 马波 《机电工程》 北大核心 2025年第8期1502-1511,共10页
往复机械壳体振动信号往往由多个不同的冲击源共同作用产生。针对往复机械壳体振动信号在时域上相互叠加、耦合且振动信号多源冲击时域间隔分布不规则,从而导致信号分解难度大的问题,提出了一种改进麻雀搜索算法(ISSA)优化变分时域分解(... 往复机械壳体振动信号往往由多个不同的冲击源共同作用产生。针对往复机械壳体振动信号在时域上相互叠加、耦合且振动信号多源冲击时域间隔分布不规则,从而导致信号分解难度大的问题,提出了一种改进麻雀搜索算法(ISSA)优化变分时域分解(VTDD)的往复机械冲击特征自适应提取新方法。首先,采用Circle混沌映射初始化麻雀种群,引入仿生鱼鹰攻击鱼类的模型,改进了发现者位置更新策略,从而避免了搜索算法陷入局部最优;然后,基于ISSA迭代搜索最优适应度值对应的VTDD最优参数组合,完成了多源冲击信号自适应分解,得到了分解子冲击信号的时域中心及能量信息;最后,利用大头瓦磨损故障和气缸余隙不当的实际工程案例数据,将ISSA-VTDD方法和传统的VTDD方法进行了对比分析。研究结果表明:ISSA优化VTDD能高效地搜索出VTDD最优的预设参数组合,精确有效地提取故障冲击特征,迭代次数和适应度分别为11次和5.25;ISSA-VTDD方法对各种复杂工况、不同信号特性都具有良好适应性;与其他同类方法的对比结果表明,ISSA-VTDD方法具有最高的冲击信号重构精度,即分解效果最优。可见ISSA-VTDD方法具有更优越的冲击时域特征提取能力。 展开更多
关键词 往复机械壳体振动信号 改进麻雀搜索算法 变分时域分解 多源冲击信号自适应分解 冲击时域特征提取 迭代次数
在线阅读 下载PDF
基于鲸鱼算法优化特征模态分解的滚动轴承复合故障诊断方法
3
作者 徐帅 张超 《机电工程》 北大核心 2025年第8期1440-1449,共10页
针对特征模态分解(FMD)在处理复合故障时参数难以选取的问题,提出了一种基于鲸鱼优化算法(WOA)优化FMD的滚动轴承复合故障诊断方法。首先,基于信号频谱能量和模态分布,设计了一个综合评价指标——自适应加权频域峰度与交叉信息熵的比值... 针对特征模态分解(FMD)在处理复合故障时参数难以选取的问题,提出了一种基于鲸鱼优化算法(WOA)优化FMD的滚动轴承复合故障诊断方法。首先,基于信号频谱能量和模态分布,设计了一个综合评价指标——自适应加权频域峰度与交叉信息熵的比值,并将其作为目标函数,该指标不仅能够精准捕捉信号的故障特征,还能在分解过程中平衡各模态之间的关系;然后,利用WOA对FMD中的两个关键参数(即模态数n和滤波器长度L)进行了自适应优化,以调整到最佳值,确保FMD分解结果既能充分提取故障特征,又能有效抑制噪声干扰;最后,基于内蒙古科技大学机械工程学院的HZXT-DS-003双跨转子滚动轴承试验平台,构建了涵盖多种复合故障模式的轴承数据集,并进行了实验分析。仿真与实验研究结果表明:该方法在噪声抑制方面表现出色,能够有效识别复合故障中相对较弱的故障特征频率,从而显著提升了滚动轴承复合故障诊断的准确性和可靠性;此外,通过将该方法与对比方法进行了多方面的定性和定量对比分析,进一步验证了该方法的优越性。可见基于WOA优化FMD的故障诊断方法可以对滚动轴承复合故障进行有效诊断。 展开更多
关键词 滚动轴承故障诊断 特征模态分解 鲸鱼优化算法 自适应加权频域峰度与交叉信息熵比值 故障特征提取 噪声干扰抑制
在线阅读 下载PDF
基于经验模式分解处理局部放电数据的自适应直接阈值算法 被引量:41
4
作者 李天云 高磊 +1 位作者 聂永辉 金国彬 《中国电机工程学报》 EI CSCD 北大核心 2006年第15期29-34,共6页
根据局部放电信号的特征,将经验模式分解(EMD)应用于局部放电信号分析中,提出了处理局部放电数据的自适应直接阈值(ADT)算法。首先,将基于EMD的时空滤波方法应用于局部放电数据的预处理中。与传统滤波方法相比,该方法无需预定义滤波器系... 根据局部放电信号的特征,将经验模式分解(EMD)应用于局部放电信号分析中,提出了处理局部放电数据的自适应直接阈值(ADT)算法。首先,将基于EMD的时空滤波方法应用于局部放电数据的预处理中。与传统滤波方法相比,该方法无需预定义滤波器系数,而且能够充分保留原始信号本身所固有的非平稳特征。其次,为了最大限度的抑制噪声干扰,进而提出了ADT算法。该方法不存在小波方法中的小波基选取问题,以多分辨率的EMD为基础,结合3σ准则自适应地确定分解尺度和阈值,是一种完全的数据驱动型方法,具有较好的自适应能力和综合处理性能。仿真数据和试验数据的处理结果表明了该方法的有效性。 展开更多
关键词 局部放电 经验模式分解 3σ准则 自适应直接 阈值算法
在线阅读 下载PDF
改进的自适应特征值分解声源定位算法研究 被引量:12
5
作者 王楷 宗志亚 +1 位作者 孙小惟 石为人 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第6期1241-1246,共6页
麦克风阵列室内声源定位,常用声达时间差定位技术。本文针对估计时延的自适应特征值分解算法收敛速度慢,时延估计精度较差,麦克风较多等问题,提出一种改进的自适应特征值分解时延估计算法,采用单源多元混响模型,将混响效应描述为室内冲... 麦克风阵列室内声源定位,常用声达时间差定位技术。本文针对估计时延的自适应特征值分解算法收敛速度慢,时延估计精度较差,麦克风较多等问题,提出一种改进的自适应特征值分解时延估计算法,采用单源多元混响模型,将混响效应描述为室内冲激响应滤波器对信号的滤波过程,估计不同阵元的冲激响应抑制混响,根据冲激响应峰值计算时延。通过引入最小均方牛顿算法,加快了AED算法的收敛速度。给出了对声源进行三维定位的三麦克风阵列结构,实际测试结果表明,改进算法与三麦克风阵列的定位方法对声源的定位更加准确。 展开更多
关键词 声源定位 自适应特征值分解算法 时延估计 最小均方牛顿算法
在线阅读 下载PDF
基于小波分解的自适应滤波算法在抑制局部放电窄带周期干扰中的应用 被引量:64
6
作者 黄成军 郁惟镛 《中国电机工程学报》 EI CSCD 北大核心 2003年第1期107-111,共5页
在局部放电在线监测中,由于窄带周期干扰的频率范围很宽,自适应滤波器的参数设置比较困难,有时甚至会导致算法不稳定。为此,文中提出了一种基于小波分解的自适应滤波算法,以用于抑制窄带周期干扰:利用小波的分频特性先将信号分解到不同... 在局部放电在线监测中,由于窄带周期干扰的频率范围很宽,自适应滤波器的参数设置比较困难,有时甚至会导致算法不稳定。为此,文中提出了一种基于小波分解的自适应滤波算法,以用于抑制窄带周期干扰:利用小波的分频特性先将信号分解到不同的频段上,然后对各频段的信号施以自适应滤波,由于信号被分解到不同的频段,各频段内的窄带干扰频率相差有限,所以,可以根据各频段信号的特性采用最佳的滤波参数,以达到较好的滤波性能。计算机仿真分析和现场数据处理表明,该算法比普通自适应滤波算法有更好的抗干扰性能和稳定性。 展开更多
关键词 发电机 小波分解 局部放电 在线监测 噪声 自适应滤波算法 窄带干扰
在线阅读 下载PDF
QR分解的最小二乘格型自适应滤波算法在噪声主动控制中的应用 被引量:4
7
作者 宁少武 史治宇 《振动工程学报》 EI CSCD 北大核心 2013年第3期363-373,共11页
在噪声主动控制系统中,滤波-x递归最小二乘(FxRLS)算法收敛速度快但计算量大。基于此,提出了格型联合估计滤波器结构与基于QR分解的最小二乘格型(QRD-LSL)自适应滤波算法相结合的噪声控制方法,该方法对联合估计过程进行了改进并得到了... 在噪声主动控制系统中,滤波-x递归最小二乘(FxRLS)算法收敛速度快但计算量大。基于此,提出了格型联合估计滤波器结构与基于QR分解的最小二乘格型(QRD-LSL)自适应滤波算法相结合的噪声控制方法,该方法对联合估计过程进行了改进并得到了基于各阶估计误差的联合过程估计权系数更新关系,格型联合估计器结构简单,QRD-LSL自适应滤波算法数值稳定性好。仿真结果表明提出的噪声控制方法有良好的噪声控制效果,收敛速度快,计算量小,稳态误差小,跟踪性能好。 展开更多
关键词 噪声主动控制 滤波-x最小均方算法 滤波-x递归最小二乘算法 格型联合估计滤波器 QR分解的最小二乘格型自适应滤波器
在线阅读 下载PDF
多尺度小波分解下的自适应语音消噪算法研究 被引量:1
8
作者 唐建锋 张登玉 罗湘南 《计算机工程与应用》 CSCD 北大核心 2009年第23期154-157,共4页
将小波变换的理论引入到自适应语音消噪系统中,分析了多尺度小波分解下的LMS自适应消噪算法(MSWD-LMS)的原理,该算法将输入向量分解到多尺度空间,减小了自适应滤波器输入向量自相关矩阵的谱动态范围;将变步长LMS算法与多尺度小波变换的... 将小波变换的理论引入到自适应语音消噪系统中,分析了多尺度小波分解下的LMS自适应消噪算法(MSWD-LMS)的原理,该算法将输入向量分解到多尺度空间,减小了自适应滤波器输入向量自相关矩阵的谱动态范围;将变步长LMS算法与多尺度小波变换的思想结合,提出了一种新的小波自适应语音消噪算法(MSWD-VSS-LMS),新算法既减少了输入向量自相关矩阵条件数,又克服了固定步长LMS算法在收敛速度与收敛精度方面与步长因子μ的矛盾,获得了更好的语音信号处理的收敛速度和稳定性。仿真结果表明新算法取得了较好的效果。 展开更多
关键词 自适应语音消噪 最小均方(LMS)算法 变步长 多尺度小波分解
在线阅读 下载PDF
基于自适应稀疏分解的声音识别算法 被引量:1
9
作者 张一杨 姚明林 《计算机应用与软件》 北大核心 2021年第6期161-165,共5页
针对公共环境中异常声音的检测与识别存在的强噪声干扰及检测效率低的问题,提出基于参数自适应匹配跟踪的声信号识别算法。基于粒子和种群的进化率改进粒子群参数的自适应设置并优化稀疏分解目标函数;基于自适应粒子群算法的连续集搜索... 针对公共环境中异常声音的检测与识别存在的强噪声干扰及检测效率低的问题,提出基于参数自适应匹配跟踪的声信号识别算法。基于粒子和种群的进化率改进粒子群参数的自适应设置并优化稀疏分解目标函数;基于自适应粒子群算法的连续集搜索特性建立连续超完备Gabor原子集,以提高最匹配优原子与声信号的匹配度并加速原子的匹配搜索;使用SVM分类器实现公共环境异常声信号的复合特征识别。实验结果表明,与已有算法相比,该算法的公共环境异常声信号的识别率最优,且对不同背景噪声具有较好的识别鲁棒性。 展开更多
关键词 异常声信号识别 参数自适应粒子群算法 匹配追踪算法 稀疏分解 支持向量机
在线阅读 下载PDF
多目标进化算法的改进在齿轮减速器中的应用
10
作者 高淑芝 任学鹏 张义民 《机械设计与制造》 北大核心 2025年第4期190-193,197,共5页
分解的多目标算法是利用一组权重向量将一个多目标优化问题分解为一组标量子问题。针对当帕累托前沿是一个多峰和断裂等其他较复杂的情况下,均匀分布的权重向量往往收敛效果较差的问题,提出了一种种群分区管理的自适应方法用来保持种群... 分解的多目标算法是利用一组权重向量将一个多目标优化问题分解为一组标量子问题。针对当帕累托前沿是一个多峰和断裂等其他较复杂的情况下,均匀分布的权重向量往往收敛效果较差的问题,提出了一种种群分区管理的自适应方法用来保持种群的多样性与收敛性之间的平衡。首先,采用了一种均匀随机的权重向量生成方式进行初始化;其次,采用Tchebycheff分解方法进行子代的更新;再次,将提出的自适应方法对分解的多目标进化算法进行了改进;最后,通过在标准测试函数和齿轮减速器的优化仿真,证明了提出的算法的有效性。 展开更多
关键词 多目标优化 分解算法 自适应 进化算法应用
在线阅读 下载PDF
基于经验模态分解的子带自适应声学回声消除算法
11
作者 李娜 陆晓明 陈盛云 《三峡大学学报(自然科学版)》 CAS 2010年第3期85-89,共5页
在语音通信中,声学回声消除技术用于消除扬声器与麦克风之间耦合产生的回声干扰.在声学回声抵消系统的实现过程中,可以通过子带技术来提高系统的性能,并减小算法本身的运算量.常见的子带算法多是基于组合滤波器、小波变换实现的.本文基... 在语音通信中,声学回声消除技术用于消除扬声器与麦克风之间耦合产生的回声干扰.在声学回声抵消系统的实现过程中,可以通过子带技术来提高系统的性能,并减小算法本身的运算量.常见的子带算法多是基于组合滤波器、小波变换实现的.本文基于经验模态分解提出一种新的自适应回声消除算法EMD-APNLMS,它克服了基于组合滤波器算法收敛慢的缺点以及基于小波变换算法需要选择小波基的问题.计算机仿真结果表明,该算法实现了回声的消除,收敛速率较快,非常适用回声这种非平稳信号的处理. 展开更多
关键词 回声消除 自适应算法 经验模态分解
在线阅读 下载PDF
基于模态分解和误差修正的短期电力负荷预测
12
作者 鄢化彪 李东丽 +2 位作者 黄绿娥 张航菘 姚龙龙 《电子测量技术》 北大核心 2025年第5期92-101,共10页
针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大... 针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大信息系数筛选出与负荷高度相关的特征集,以削弱特征冗余;通过改进的自适应白噪声完全集合经验模态分解将高波动性的负荷分解为频率各异的本征模态分量和残差,以降低非平稳性;引入样本熵将复杂度相近的分量重构成新子序列,以降低计算量;然后,结合并行双向时间卷积网络提取不同尺度的特征,利用双向长短期记忆网络对负荷序列初步预测,使用麻雀优化算法对神经网络超参数调优;最后,误差序列通过误差修正模块对初始预测值进行修正。经实验验证,与其他预测模型相比,RMSE最多降低51.42%,最少降低34.26%,验证了模型的准确性和有效性。 展开更多
关键词 电力负荷 短期预测 自适应经验模态分解 样本熵 双向时间卷积网络 双向长短期记忆 麻雀搜索算法
在线阅读 下载PDF
基于自适应变分模态分解的齿轮箱故障诊断 被引量:1
13
作者 谢锋云 汪淦 +2 位作者 赏鉴栋 樊秋阳 朱海燕 《推进技术》 EI CAS CSCD 北大核心 2024年第9期218-227,共10页
针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值... 针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值,筛选同时大于阈值的分量作为包含主要能量且与原信号更加相似的分量进行重构,实现信号的降噪和特征增强。利用结合精细复合多尺度散布熵(RCMDE)对降噪后的信号进行特征提取,充分提取反映振动信号不同时间尺度复杂程度的非线性特征组成特征向量。使用粒子群算法(PSO)优化的核极限学习机(KELM)对所提取的特征进行识别。通过实验验证,该模型10次测试的平均准确率可达95.04%。与其他特征提取和模式识别方法进行对比,所提方法具有更高的诊断准确率,为航空齿轮箱的故障诊断提供了新的方法。 展开更多
关键词 航空齿轮箱 故障诊断 信号降噪 自适应变分模态分解 粒子群算法 核极限学习机
在线阅读 下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法 被引量:2
14
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河
在线阅读 下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:3
15
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进的自适应噪声完备集合经验模态分解 样本熵 蜣螂优化算法
在线阅读 下载PDF
基于ICEEMDAN-PE-GDBO-LSSVM的风电功率预测
16
作者 汪繁荣 张旭东 《现代电子技术》 北大核心 2025年第10期57-62,共6页
随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM... 随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM)的组合模型。首先使用ICEEMDAN对风电数据进行分解,从而降低复杂度;之后根据PE对分解后得到的各分量进行聚合,再使用GDBO算法对LSSVM的关键参数进行寻优,以得到最佳预测模型;最后使用优化模型对各聚合分量分别进行预测和叠加,得到总的预测结果。基于国内风电场数据集进行实验验证,结果表明所提方法有较高的预测精度,均方根误差比单一的LSSVM模型低61.39%,在工程实践中具有更为广阔的应用前景。 展开更多
关键词 风电功率预测 自适应噪声完全集合经验模态分解 改进的蜣螂优化算法 排列熵 改进的完全集合经验模态分解 最小支持二乘向量机 分量聚合
在线阅读 下载PDF
自适应连续集稀疏分解声音识别算法
17
作者 李丹鹤 陈晓东 《机械设计与制造》 北大核心 2020年第8期211-214,219,共5页
为实现公共环境复杂背景中异常声信号识别以辅助公共场所安全监控,提出基于连续完备集的自适应MP稀疏分解声音识别算法,算法通过相关参数改进实现自适应PSO算法,然后借助PSO算法的连续空间搜索优势对MP稀疏分解进行连续集优化,从而提高... 为实现公共环境复杂背景中异常声信号识别以辅助公共场所安全监控,提出基于连续完备集的自适应MP稀疏分解声音识别算法,算法通过相关参数改进实现自适应PSO算法,然后借助PSO算法的连续空间搜索优势对MP稀疏分解进行连续集优化,从而提高稀疏分解获得的最优原子的匹配度,最后提取重构声信号的时频参数特征以SVM算法实现异常声音事件的快速准确识别。实验结果表明,与已有算法相比,所提识别算法显著降低了计算量,并取得了最优的声音识别率和识别鲁棒性。 展开更多
关键词 声音信号识别 自适应粒子群算法 匹配追踪 稀疏分解
在线阅读 下载PDF
雨刮-风窗摩擦噪声声品质主动控制自适应均衡算法 被引量:1
18
作者 范会志 郭辉 +3 位作者 冯庆宝 孙裴 王岩松 陆仲辉 《振动与冲击》 EI CSCD 北大核心 2024年第8期263-271,共9页
雨刮-风窗摩擦噪声是影响车内声品质的重要因素之一,对其声品质主动控制有利于改善车内声学环境。为了实现对雨刮-风窗摩擦噪声声品质主动控制,提出一种基于集合经验模态分解的权重约束自适应噪声均衡(ensemble-empirical-mode-decompos... 雨刮-风窗摩擦噪声是影响车内声品质的重要因素之一,对其声品质主动控制有利于改善车内声学环境。为了实现对雨刮-风窗摩擦噪声声品质主动控制,提出一种基于集合经验模态分解的权重约束自适应噪声均衡(ensemble-empirical-mode-decomposition weight constrained adaptive noise equalizer,EWCANE)算法。首先通过集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法分解雨刮-风窗摩擦噪声得到非平稳度较低的固有模式函数分量,计算各分量的方差比以表征各分量对噪声的影响程度;然后基于输入信号和误差信号的欧式范数以自适应对滤波器权重进行约束来降低噪声的瞬态冲击;最后根据方差比调整声音增益因子以均衡各分量的声品质主动控制。经过仿真验证,实车雨刮-风窗摩擦噪声信号响度得到有效降低,改善了雨刮-风窗摩擦噪声的声品质。 展开更多
关键词 雨刮-风窗 声品质主动控制 集合经验模态分解(Eemd) 自适应噪声均衡(ANE)算法
在线阅读 下载PDF
基于QR分解算法的自适应抗干扰阵列最优权值并行提取 被引量:1
19
作者 李承阳 胡光锐 龚耀寰 《应用科学学报》 CAS CSCD 1998年第3期326-330,共5页
自适应抗干扰阵列系统通常采用数值稳定性良好的QR分解最小二乘法(QRDLS)进行自适应处理.在需要最优权值的应用中,采用“回代法”或“权冲洗法”从阵列中得到权值.这两种方法对阵列单元施加特殊控制,不能实时实现自适应处... 自适应抗干扰阵列系统通常采用数值稳定性良好的QR分解最小二乘法(QRDLS)进行自适应处理.在需要最优权值的应用中,采用“回代法”或“权冲洗法”从阵列中得到权值.这两种方法对阵列单元施加特殊控制,不能实时实现自适应处理,也难于进行VLSI实现.文中提出的最优权值并行提取算法可以克服上述缺点,它在数据矩阵被三角化的同时从阵列中得到最优权值.另外,由于算法利用Givens旋转完成,全无除法.采用本方法的自适应处理特别适宜通过CORDIC技术进行VLSI实时实现. 展开更多
关键词 自适应阵列处理 QR分解算法 天线阵 最优权值
在线阅读 下载PDF
基于分解的改进自适应多目标粒子群优化算法 被引量:2
20
作者 庞锐 高兴宝 《复杂系统与复杂性科学》 EI CSCD 2018年第2期77-87,共11页
为提高粒子群算法的搜索效率,克服分解方法处理复杂多目标问题的不足,通过考虑父代解的选择和种群的更新对算法收敛性及解的分布均匀性的重要影响,提出了一种基于分解的改进自适应多目标粒子群优化算法。首先,为提高算法收敛速度,在分... 为提高粒子群算法的搜索效率,克服分解方法处理复杂多目标问题的不足,通过考虑父代解的选择和种群的更新对算法收敛性及解的分布均匀性的重要影响,提出了一种基于分解的改进自适应多目标粒子群优化算法。首先,为提高算法收敛速度,在分解方法确保进化种群多样性的前提下,设计了新的适应度评价方法以评价个体的优劣,并将在竞争中获胜的优质后代解添加到父代候选解中;其次,为避免算法陷入局部最优,在更新粒子时,从当前粒子的邻居或邻居外随机选择个体最优和全局最优位置;最后,引入外部文档,将其作为候选的输出种群,并采用拥挤距离维持多样性,增强了算法处理复杂问题的能力。用12个测试函数的数值实验,并与5种多目标优化算法的比较,表明了所提算法的优越性。 展开更多
关键词 粒子群算法(PSO) 自适应 适应 分解 拥挤距离
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部