Metal-organic framework(MOF)nanostructures have emerged as a prominent class of materials in the advancement of electrochemical sensors.The rational design of bimetallic MOF-functionalized microelectrode is of importa...Metal-organic framework(MOF)nanostructures have emerged as a prominent class of materials in the advancement of electrochemical sensors.The rational design of bimetallic MOF-functionalized microelectrode is of importance for improv-ing the electrochemical performance but still in great challenge.In this work,the bimetallic FeCo-MOF nanostructures were assembled onto a gold disk ultramicroelectrode(Au UME,5.2μm in diameter)via an in-situ electrodeposition method,which enhanced the sensitive detection of epinephrine(EP).The in-situ electrodeposited FeCo-MOF exhibited a character-istic nanoflower-like morphology and was uniformly dispersed on the Au UME.The FeCo-MOF/Au UME demonstrated excellent electrochemical performance on the detection of EP with a high sensitivity of 36.93μA·μmol^(-1)·L·cm^(-2)and a low detection limit of 1.28μmol·L^(-1).It can be attributed to the nonlinear diffusion of EP onto the ultra-micro working substrate,coupled with synergistical catalytic activity of the bimetallic Fe,Co within MOF structure.Furthermore,the FeCo-MOF/Au UME has been successful applied to the analysis of EP in human serum samples,yielding high recovery rates.These results not only contribute to the expansion of the research area of electrochemical sensors,but also provide novel insights and directions into the development of high-performance MOF-based electrochemical sensors.展开更多
Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is cons...Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is constructed by reversible metal electrodeposition(RME)of Bi/Cu on WO_(3)·xH_(2)O film electrodeposited onto fluorine-doped tin oxide(FTO)transparent conductive glass.The electrolyte consists of CuCl_(2),BiCl_(3),KCl and HCl aqueous solution,supplying necessary components for both electrochemical and electrodeposition processes.The ECD shows ability to rapidly transition between colorless and black states,which achieves a large optical modulation of 77.0%at 570 nm.In the black state,the ECD exhibits a near-zero transmittance in the wavelength range of 400-1100 nm while maintaining 96.6%of its initial optical modulation after coloration/bleaching cycling of 60000 s,exhibiting good cyclic stability.This RMED has relatively high stability under open-circuit voltage and also possesses excellent heat insulation performance.The results offer a solution to overcome the poor cyclic stability of RMEDs and improve the optical modulation of ECDs.展开更多
The influences of pH value, electrolyte temperature and loading time on depositing calcium phosphate coating on pure titanium substrate by electrodeposition process were investigated. The process was carried out with ...The influences of pH value, electrolyte temperature and loading time on depositing calcium phosphate coating on pure titanium substrate by electrodeposition process were investigated. The process was carried out with an electrochemical work-station supplying a direct current power at potential of -0.8V (vs SCE). The electrolyte consists of 7 mmol·L-1 CaCl2·2H2O, 3 mmol·L-1 Ca(H2PO4)2·H2O and 2.5% H2O2. NaOH and HCl solutions were used to adjust pH value. The deposited samples were characterized by X-ray diffraction and scanning electron microscope. The comparison of the deposits obtained at lower and higher pH values demonstrates that the crystallization process at the interface is favoured by high pH value. With temperature increasing, the deposited hydroxyapatite is occasionally of plate-like shape, and the width and the length of the deposited calcium phosphates at 65 ℃ are larger than those at 55 ℃. Therefore, it is confirmed that the morphology and microstructure of electrochemically deposited calcium phosphates can be regulated. Additionally, the coating formed in electrolyte with H2O2 additive is homogeneous and the evolution of H2 bubble can be eliminated.展开更多
Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincatesolutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the re-s...Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincatesolutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the re-sults it can be concluded that Zn shows under potential deposition, Zn-Fe alloy codeposition is anomalous codeposi-tion and Zn-Fe alloy cathode polarization is increased with the introduction of additive. From the view point of elec-trochemistry, the reasons that the content of Fe in the Zn-Fe coating changes with the composition of the electrolyteand the process conditions altering and the relationship between the content of Fe and the appearance of the coatingare interpreted. The cathode polarization of Zn-Fe alloy codeposition is enhanced obviously with addition of additive.In the course of composite electrodeposition, TiO2 has less promotion to electrodeposition of zinc ions than to iron i-ons, while the electrodeposition of iron ions improves the content of TiO2 in composite coating, which is inagreement with the results of process experiments.展开更多
Electrodeposition of aluminum from benzene-tetrahydrofuran-Al Cl3-Li Al H4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and...Electrodeposition of aluminum from benzene-tetrahydrofuran-Al Cl3-Li Al H4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and crystal size, including current density, temperature, molar ratio of benzene/tetrahydrofuran and stirring speed. The deposit microstructure was adjusted by changing the parameters, and the optimum operating conditions were determined. Dense, bright and adherent aluminum coatings were obtained over a wide range of current densities(10-25 m A/cm2), molar ratio of benzene and tetrahydrofuran(4:1 to 7:8) and stirring speeds(200-500 r/min). Smaller grain sizes and well-adhered deposits were obtained at lower temperatures. Aluminum-magnesium alloys could potentially be used as hydrogen storage materials. A novel method for Al-Mg deposition was proposed by using pure Mg anodes in the organic solvents system benzene-tetrahydrofuran-Al Cl3-Li Al H4. XRD shows that the aluminum-magnesium alloys are mainly Al3Mg2 and Al12Mg17.展开更多
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe...Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.展开更多
Ni-Cr alloys with mass fraction of 1.4%23.9%Cr, 76.1%98.6%Ni, and hardness of 70.5 80.5HR were electrodeposited on aluminium substrate from the trivalent chromium sulphate-chloride solution using citric acid as comple...Ni-Cr alloys with mass fraction of 1.4%23.9%Cr, 76.1%98.6%Ni, and hardness of 70.5 80.5HR were electrodeposited on aluminium substrate from the trivalent chromium sulphate-chloride solution using citric acid as complexing agent. The aluminium was pretreated by means of degreasing and eroding, polishing and twice chemical immersion of zinc. The effects of electrodeposition parameters such as current density, temperature, pH value and bath concentration on the composition and hardness of deposits were investigated. The results show that the Cr content increases with the increase of current density and the decrease of temperature, and that it increases with the increase of pH value to a maximum and then decreases. The increase of Cr content leads to the increase of hardness of the Ni-Cr layers. The deposits with high Cr content are of good corrosion resistance. Good adherence of Ni-Cr deposits to aluminium substrate is obtained. The Ni-Cr alloys are the Ni-Cr solid solution with fcc crystalline structure. The Ni-Cr alloy deposits are fine, bright and smooth and compact.展开更多
This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A r...This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface.展开更多
The effect of two alkylpyridinium ionic liquids (py-iLs) including N-butylpyridinium hydrogen sulfate (BpyHSO4) and N-hexylpyridinium hydrogen sulfate (HpyHSO4) on the kinetics of copper electrodeposition from a...The effect of two alkylpyridinium ionic liquids (py-iLs) including N-butylpyridinium hydrogen sulfate (BpyHSO4) and N-hexylpyridinium hydrogen sulfate (HpyHSO4) on the kinetics of copper electrodeposition from acidic sulfate solution was investigated by cyclic voltammetry and potentiodynamic polarization measurements. Results from cyclic voltammetry indicate that these py-iLs have a pronounced inhibiting effect on CuE+ electroreduction and there exists a typical nucleation and growth process. Kinetic parameters such as Tafel slope, transfer coefficient and exchange current density obtained from Tafel plots, lead to the conclusion that py-iLs inhibit the charge transfer by slightly changing the copper electrodeposition mechanism through their adsorption on the cathodic surface. In addition, scanning electron microscope (SEM) and X-ray diffraction analyses reveal that the presence of these additives leads to more leveled and fine-grained cathodic deposits without changing the crystal structure of the electrodeposited copper but strongly affects the crystallographic orientation by significantly inhibiting the growth of (111), (200) and (311) planes.展开更多
A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2...A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2, the time of deposition of 120 min, the concentration of tin dichloride of 0.02 mol/L and the concentration of dissociated acid of 0. 03 mol/L. The phase identification, microstructure and morphology of the thin films were investigated by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectra,scanning electron microscopy and transmission electron microscopy. The as-deposited thin film was composed of SnO2·xH2O was obtained by drying at room temperature. Nanocrystalline SnO2 thin film having tetragonal structure with average grain size in the range of 8 to 20 nm and porous, uniform surface was obtained by heat-treating the as-deposited film at 400 ℃ for 2 h. Electrochemical characterization shows that SnO2 film can deliver a discharge capacity of 798 mAh/g and the SnO2 film with smooth surface and annealed at 400 ℃ for 2 h has better cycle performance than that with rough surface and annealed at 150℃ for 10 h.展开更多
Mercury free zinc alloy powder were electrodeposited from alkaline solution. Additives containing lead, indium or bismuth were added in the electrolyte and zinc powders with corresponding compositions were obtained....Mercury free zinc alloy powder were electrodeposited from alkaline solution. Additives containing lead, indium or bismuth were added in the electrolyte and zinc powders with corresponding compositions were obtained. The relations between adding amounts of additives and the contents of corresponding compositions in zinc powder are not linear. Aluminum and calcium cannot be co deposited with zinc. Electrodeposition effectively reduced the contents of harmful impurities. Gas evolution of electrodeposited Zn Pb In Bi alloy powder was less than that of atomized mercury free alloy powder.展开更多
In order to develop an energy saving electrodeposition process of copper, the electrodeposition of copper in copper sulfate solution by the ion exchange membrane primary cell (IMPC) method has been studied. The experi...In order to develop an energy saving electrodeposition process of copper, the electrodeposition of copper in copper sulfate solution by the ion exchange membrane primary cell (IMPC) method has been studied. The experiments were carried out in an ion exchange membrane primary cell with dimensions of 200 mm in length, 52 mm in width and 90 mm in height. The influences of temperature(294 323 K), interval between the anode and cathode (1.5 3.5 cm), mass concentrations of Cu 2+ (6 40 g/L), H 2SO 4(0 120 g/L) and Fe 3+ (3 9 g/L) in catholyte and solution flow rate (0 8 cm/s) on current density and current efficiency were investigated experimentally. The current density increases with the increase of temperature and concentrations of Cu 2+ and H 2SO 4 in catholyte. Cathode current efficiency decreases with the increase of concentration of Fe 3+ in catholyte and anode current efficiency decreases with the increase of temperature. The high quality cathodic copper can be obtained and the current density of membrane can be higher than 150 A/m 2 and the current density of cathode can be higher than 300 A/m 2. The experiment results show that IMPC method is effective for electrodeposition of copper.展开更多
Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode...Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode surface. Effects of electrolytic parameters on the size of Ni particles were studied. The performances of hydrogen evolution and hydrogen storage of the Ni nanoparticles plating electrode were also investigated. The results indicate that the size of Ni nanoparticles decreases with the increase of Ni2+ concentration and the decrease of current density. The electrochemical activity of Ni nanoparticles plating electrode is much higher than that of bulk Ni electrode.展开更多
In order to inhibit hydrogen evolution and enhance current efficiency of Zn-Fe alloy electrodeposition from alkaline zincate solution, hydrogen inhibitors composed of the sulfur group elements were optimized on the ba...In order to inhibit hydrogen evolution and enhance current efficiency of Zn-Fe alloy electrodeposition from alkaline zincate solution, hydrogen inhibitors composed of the sulfur group elements were optimized on the basis of atom structures analysis. The effects of hydrogen inhibitor on the current efficiency of Zn-Fe alloy electroplating and their electrochemical behaviors were studied. The results indicate that hydrogen inhibitor can increase the current efficiency of Zn-Fe alloy electroplating evidently, from 63.28% without hydrogen inhibitor up to 83.54% with a hydrogen inhibitor at a volume fraction of 2.0%, while it has a minor influence on that of pure Zn plating, which maintains at 80%. The optimum volume fraction of hydrogen inhibitor is 2.0%.展开更多
Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemica...Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.展开更多
Non Pt based metals and alloys as electrode materials for methyl alcohol fuel cells have been investigated w ith an aim of finding high electrocatalytic surface property for the faster electrode reactions.Electrodes w...Non Pt based metals and alloys as electrode materials for methyl alcohol fuel cells have been investigated w ith an aim of finding high electrocatalytic surface property for the faster electrode reactions.Electrodes w ere fabricated by electrodeposition on pure Al foil,from an electrolyte of Ni,Co,Fe salts.The optimum condition of electrodeposition w ere found out by a series of experiments,varying the chemistry of the electrolyte,pH valve,temperature,current and cell potential.Polarization study of the coated Ni-Co or Ni-CoFe alloy on pure Al w as found to exhibit high exchange current density,indicating an improved electro catalytic surface w ith faster charge-discharge reactions at anode and cathode and low overvoltage.Electrochemical impedance studies on coated and uncoated surface clearly show ed that the polarization resistance and impedance w ere decreased by Ni-Co or Ni-Co-Fe coating.X-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX)and atomic absorption spectroscopy(AAS)studies confirmed the presence of alloying elements and constituents of the alloy.The morphology of the deposits from scanning electron microscope(SEM)images indicated that the electrode surface w as a three dimensional space w hich increased the effective surface area for the electrode reactions to take place.展开更多
This work considered the influence of Cr3 C2 particle loading on microstructure and mechanical properties of Zn-SiC-Cr3 C2 nanocomposite produced via electrocodeposition are investigated. The surface nature of the nan...This work considered the influence of Cr3 C2 particle loading on microstructure and mechanical properties of Zn-SiC-Cr3 C2 nanocomposite produced via electrocodeposition are investigated. The surface nature of the nanocomposite coatings were characterized using scanning electron microscope(SEM)coupled with the energy dispersive spectrometer(EDS). Abrasive wear behaviour and hardness property of Zn-SiC-Cr3 C2 nanocomposite produced were investigated using CERT UMT-2 multi-functional tribological tester and Dura Scan hardness tester. The corrosion property was evaluated through linear polarization approach. The result showed that the coatings exhibited good stability and Cr_3 C_2 nanocomposite loading significantly improved the micro structural performance, hardness property,wear resistance as well as corrosion resistance of the coatings.展开更多
The Ni-Cr alloy electrodepositing technology on iron substrate in the chlorid-sulfate solution and the impacts of main processing parameters on coating composition were studied. The optimal Ni-Cr alloy electrodepositi...The Ni-Cr alloy electrodepositing technology on iron substrate in the chlorid-sulfate solution and the impacts of main processing parameters on coating composition were studied. The optimal Ni-Cr alloy electrodepositing conditions are that the cathode current density is 16 A/dm^2,the plating solution temperature is 30℃ and the pH value is 2.5. The bright, compact coating gained under the optimal conditions has good cohesion and 24.1% Cr content. The results show that the coating is composed of crystalline, the average grain size is 82 nm and the higher the Cr content of coating, the larger the rigidity, and the higher the corrosion resistance. The rigidity of coating reaches 78.6(HR30T) and the passivation area broadens to 1.4 V when the Cr content of coating is 24.1%.展开更多
Highly ordered and porous anodic aluminum oxide templates were prepared. The ordered copper nanowires arrays were assembled in nano-holes of the template by alternating current electrodeposition at lover voltage. The ...Highly ordered and porous anodic aluminum oxide templates were prepared. The ordered copper nanowires arrays were assembled in nano-holes of the template by alternating current electrodeposition at lover voltage. The morphologies of template and copper nano-wires arrays were characterized by means of field emission scanning electron microscope (FESEM) and the crystal structure of copper nano-wires was determined by means of X-ray diffraction. The results indicate that copper nano-wires hold the preferred crystalline orientation along (111), (200), (220) and (331) crystal faces during growth, and the growth of copper nano-wires in the nano-holes of the template is homogenous and continuous.展开更多
基金support from the National Key Research and Development Program of China(2021YFB3201400,2021YFB3201401,2020YFC1908602)the National Natural Science Foundation of China(21904001 and 61774159)+1 种基金the Anhui Provincial Natural Science Foundation(2008085QF288)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Anhui Province(2020LCX032).
文摘Metal-organic framework(MOF)nanostructures have emerged as a prominent class of materials in the advancement of electrochemical sensors.The rational design of bimetallic MOF-functionalized microelectrode is of importance for improv-ing the electrochemical performance but still in great challenge.In this work,the bimetallic FeCo-MOF nanostructures were assembled onto a gold disk ultramicroelectrode(Au UME,5.2μm in diameter)via an in-situ electrodeposition method,which enhanced the sensitive detection of epinephrine(EP).The in-situ electrodeposited FeCo-MOF exhibited a character-istic nanoflower-like morphology and was uniformly dispersed on the Au UME.The FeCo-MOF/Au UME demonstrated excellent electrochemical performance on the detection of EP with a high sensitivity of 36.93μA·μmol^(-1)·L·cm^(-2)and a low detection limit of 1.28μmol·L^(-1).It can be attributed to the nonlinear diffusion of EP onto the ultra-micro working substrate,coupled with synergistical catalytic activity of the bimetallic Fe,Co within MOF structure.Furthermore,the FeCo-MOF/Au UME has been successful applied to the analysis of EP in human serum samples,yielding high recovery rates.These results not only contribute to the expansion of the research area of electrochemical sensors,but also provide novel insights and directions into the development of high-performance MOF-based electrochemical sensors.
文摘Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is constructed by reversible metal electrodeposition(RME)of Bi/Cu on WO_(3)·xH_(2)O film electrodeposited onto fluorine-doped tin oxide(FTO)transparent conductive glass.The electrolyte consists of CuCl_(2),BiCl_(3),KCl and HCl aqueous solution,supplying necessary components for both electrochemical and electrodeposition processes.The ECD shows ability to rapidly transition between colorless and black states,which achieves a large optical modulation of 77.0%at 570 nm.In the black state,the ECD exhibits a near-zero transmittance in the wavelength range of 400-1100 nm while maintaining 96.6%of its initial optical modulation after coloration/bleaching cycling of 60000 s,exhibiting good cyclic stability.This RMED has relatively high stability under open-circuit voltage and also possesses excellent heat insulation performance.The results offer a solution to overcome the poor cyclic stability of RMEDs and improve the optical modulation of ECDs.
文摘The influences of pH value, electrolyte temperature and loading time on depositing calcium phosphate coating on pure titanium substrate by electrodeposition process were investigated. The process was carried out with an electrochemical work-station supplying a direct current power at potential of -0.8V (vs SCE). The electrolyte consists of 7 mmol·L-1 CaCl2·2H2O, 3 mmol·L-1 Ca(H2PO4)2·H2O and 2.5% H2O2. NaOH and HCl solutions were used to adjust pH value. The deposited samples were characterized by X-ray diffraction and scanning electron microscope. The comparison of the deposits obtained at lower and higher pH values demonstrates that the crystallization process at the interface is favoured by high pH value. With temperature increasing, the deposited hydroxyapatite is occasionally of plate-like shape, and the width and the length of the deposited calcium phosphates at 65 ℃ are larger than those at 55 ℃. Therefore, it is confirmed that the morphology and microstructure of electrochemically deposited calcium phosphates can be regulated. Additionally, the coating formed in electrolyte with H2O2 additive is homogeneous and the evolution of H2 bubble can be eliminated.
文摘Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincatesolutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the re-sults it can be concluded that Zn shows under potential deposition, Zn-Fe alloy codeposition is anomalous codeposi-tion and Zn-Fe alloy cathode polarization is increased with the introduction of additive. From the view point of elec-trochemistry, the reasons that the content of Fe in the Zn-Fe coating changes with the composition of the electrolyteand the process conditions altering and the relationship between the content of Fe and the appearance of the coatingare interpreted. The cathode polarization of Zn-Fe alloy codeposition is enhanced obviously with addition of additive.In the course of composite electrodeposition, TiO2 has less promotion to electrodeposition of zinc ions than to iron i-ons, while the electrodeposition of iron ions improves the content of TiO2 in composite coating, which is inagreement with the results of process experiments.
基金Projects(51101104,51372156)supported by the National Natural Science Foundation of ChinaProject(LJQ2015074)supported by the Program for Liaoning Excellent Talents in University,China
文摘Electrodeposition of aluminum from benzene-tetrahydrofuran-Al Cl3-Li Al H4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and crystal size, including current density, temperature, molar ratio of benzene/tetrahydrofuran and stirring speed. The deposit microstructure was adjusted by changing the parameters, and the optimum operating conditions were determined. Dense, bright and adherent aluminum coatings were obtained over a wide range of current densities(10-25 m A/cm2), molar ratio of benzene and tetrahydrofuran(4:1 to 7:8) and stirring speeds(200-500 r/min). Smaller grain sizes and well-adhered deposits were obtained at lower temperatures. Aluminum-magnesium alloys could potentially be used as hydrogen storage materials. A novel method for Al-Mg deposition was proposed by using pure Mg anodes in the organic solvents system benzene-tetrahydrofuran-Al Cl3-Li Al H4. XRD shows that the aluminum-magnesium alloys are mainly Al3Mg2 and Al12Mg17.
文摘Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.
基金Project (59674025) supported by the National Natural Science Foundation of China
文摘Ni-Cr alloys with mass fraction of 1.4%23.9%Cr, 76.1%98.6%Ni, and hardness of 70.5 80.5HR were electrodeposited on aluminium substrate from the trivalent chromium sulphate-chloride solution using citric acid as complexing agent. The aluminium was pretreated by means of degreasing and eroding, polishing and twice chemical immersion of zinc. The effects of electrodeposition parameters such as current density, temperature, pH value and bath concentration on the composition and hardness of deposits were investigated. The results show that the Cr content increases with the increase of current density and the decrease of temperature, and that it increases with the increase of pH value to a maximum and then decreases. The increase of Cr content leads to the increase of hardness of the Ni-Cr layers. The deposits with high Cr content are of good corrosion resistance. Good adherence of Ni-Cr deposits to aluminium substrate is obtained. The Ni-Cr alloys are the Ni-Cr solid solution with fcc crystalline structure. The Ni-Cr alloy deposits are fine, bright and smooth and compact.
基金Projects(11304243,11102164)supported by the National Natural Science Foundation of ChinaProject(2014JQ1039)supported by the Natural Science Foundation of Shannxi Province,China+3 种基金Project(12JK0966)supported by the Shaanxi Provincial Education Department,ChinaProject(2013QDJ037)supported by the Xi’an University of Science and Technology Dr Scientific Research Fund,ChinaProject(3102016ZY027)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(13GH014602)supported by the Program of New Staff and Research Area Project of NPU,China
文摘This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface.
基金Projects(51204080, 51274108) supported by the National Natural Science Foundation of ChinaProject(2011FA009) supported by the Natural Science Foundation of Yunnan Province, ChinaProject(2011FZ020) supported by the Application Research Foundation of Yunnan Province, China
文摘The effect of two alkylpyridinium ionic liquids (py-iLs) including N-butylpyridinium hydrogen sulfate (BpyHSO4) and N-hexylpyridinium hydrogen sulfate (HpyHSO4) on the kinetics of copper electrodeposition from acidic sulfate solution was investigated by cyclic voltammetry and potentiodynamic polarization measurements. Results from cyclic voltammetry indicate that these py-iLs have a pronounced inhibiting effect on CuE+ electroreduction and there exists a typical nucleation and growth process. Kinetic parameters such as Tafel slope, transfer coefficient and exchange current density obtained from Tafel plots, lead to the conclusion that py-iLs inhibit the charge transfer by slightly changing the copper electrodeposition mechanism through their adsorption on the cathodic surface. In addition, scanning electron microscope (SEM) and X-ray diffraction analyses reveal that the presence of these additives leads to more leveled and fine-grained cathodic deposits without changing the crystal structure of the electrodeposited copper but strongly affects the crystallographic orientation by significantly inhibiting the growth of (111), (200) and (311) planes.
文摘A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2, the time of deposition of 120 min, the concentration of tin dichloride of 0.02 mol/L and the concentration of dissociated acid of 0. 03 mol/L. The phase identification, microstructure and morphology of the thin films were investigated by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectra,scanning electron microscopy and transmission electron microscopy. The as-deposited thin film was composed of SnO2·xH2O was obtained by drying at room temperature. Nanocrystalline SnO2 thin film having tetragonal structure with average grain size in the range of 8 to 20 nm and porous, uniform surface was obtained by heat-treating the as-deposited film at 400 ℃ for 2 h. Electrochemical characterization shows that SnO2 film can deliver a discharge capacity of 798 mAh/g and the SnO2 film with smooth surface and annealed at 400 ℃ for 2 h has better cycle performance than that with rough surface and annealed at 150℃ for 10 h.
文摘Mercury free zinc alloy powder were electrodeposited from alkaline solution. Additives containing lead, indium or bismuth were added in the electrolyte and zinc powders with corresponding compositions were obtained. The relations between adding amounts of additives and the contents of corresponding compositions in zinc powder are not linear. Aluminum and calcium cannot be co deposited with zinc. Electrodeposition effectively reduced the contents of harmful impurities. Gas evolution of electrodeposited Zn Pb In Bi alloy powder was less than that of atomized mercury free alloy powder.
文摘In order to develop an energy saving electrodeposition process of copper, the electrodeposition of copper in copper sulfate solution by the ion exchange membrane primary cell (IMPC) method has been studied. The experiments were carried out in an ion exchange membrane primary cell with dimensions of 200 mm in length, 52 mm in width and 90 mm in height. The influences of temperature(294 323 K), interval between the anode and cathode (1.5 3.5 cm), mass concentrations of Cu 2+ (6 40 g/L), H 2SO 4(0 120 g/L) and Fe 3+ (3 9 g/L) in catholyte and solution flow rate (0 8 cm/s) on current density and current efficiency were investigated experimentally. The current density increases with the increase of temperature and concentrations of Cu 2+ and H 2SO 4 in catholyte. Cathode current efficiency decreases with the increase of concentration of Fe 3+ in catholyte and anode current efficiency decreases with the increase of temperature. The high quality cathodic copper can be obtained and the current density of membrane can be higher than 150 A/m 2 and the current density of cathode can be higher than 300 A/m 2. The experiment results show that IMPC method is effective for electrodeposition of copper.
基金Projects(20673036,J0830415) supported by the National Natural Science Foundation of ChinaProject(09JJ3025) supported by Hunan Provincial Natural Science Foundation of ChinaProject(09GK3173) supported by the Planned Science and Technology Project of Hunan Province,China
文摘Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode surface. Effects of electrolytic parameters on the size of Ni particles were studied. The performances of hydrogen evolution and hydrogen storage of the Ni nanoparticles plating electrode were also investigated. The results indicate that the size of Ni nanoparticles decreases with the increase of Ni2+ concentration and the decrease of current density. The electrochemical activity of Ni nanoparticles plating electrode is much higher than that of bulk Ni electrode.
基金Project(50274073) supported by the National Natural Science Foundation of China
文摘In order to inhibit hydrogen evolution and enhance current efficiency of Zn-Fe alloy electrodeposition from alkaline zincate solution, hydrogen inhibitors composed of the sulfur group elements were optimized on the basis of atom structures analysis. The effects of hydrogen inhibitor on the current efficiency of Zn-Fe alloy electroplating and their electrochemical behaviors were studied. The results indicate that hydrogen inhibitor can increase the current efficiency of Zn-Fe alloy electroplating evidently, from 63.28% without hydrogen inhibitor up to 83.54% with a hydrogen inhibitor at a volume fraction of 2.0%, while it has a minor influence on that of pure Zn plating, which maintains at 80%. The optimum volume fraction of hydrogen inhibitor is 2.0%.
基金Project(2005CB623703) supported by the National Key Basic Research Program of ChinaProject(50474051) supported by the National Natural Science Foundation of China+2 种基金Project(CX2009B032) supported by Innovation Foundation for Postgraduate of Hunan Province of China Project(ZKJ2009024) supported by the Precious Apparatus Open Share Foundation of Central South University, ChinaProject(2009ybfz02) supported by Excellent Doctor Support Fund of Central South University,China
文摘Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.
文摘Non Pt based metals and alloys as electrode materials for methyl alcohol fuel cells have been investigated w ith an aim of finding high electrocatalytic surface property for the faster electrode reactions.Electrodes w ere fabricated by electrodeposition on pure Al foil,from an electrolyte of Ni,Co,Fe salts.The optimum condition of electrodeposition w ere found out by a series of experiments,varying the chemistry of the electrolyte,pH valve,temperature,current and cell potential.Polarization study of the coated Ni-Co or Ni-CoFe alloy on pure Al w as found to exhibit high exchange current density,indicating an improved electro catalytic surface w ith faster charge-discharge reactions at anode and cathode and low overvoltage.Electrochemical impedance studies on coated and uncoated surface clearly show ed that the polarization resistance and impedance w ere decreased by Ni-Co or Ni-Co-Fe coating.X-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX)and atomic absorption spectroscopy(AAS)studies confirmed the presence of alloying elements and constituents of the alloy.The morphology of the deposits from scanning electron microscope(SEM)images indicated that the electrode surface w as a three dimensional space w hich increased the effective surface area for the electrode reactions to take place.
基金National Research FoundationSurface Engineering Research Centre (SERC)+1 种基金Tshwane University of Technology,Pretoria,South Africa were acknowledge for their supportCovenant University Centre for Research Innovation and Discovery (CUCRID) Ota, Nigeria for the provision of financial support
文摘This work considered the influence of Cr3 C2 particle loading on microstructure and mechanical properties of Zn-SiC-Cr3 C2 nanocomposite produced via electrocodeposition are investigated. The surface nature of the nanocomposite coatings were characterized using scanning electron microscope(SEM)coupled with the energy dispersive spectrometer(EDS). Abrasive wear behaviour and hardness property of Zn-SiC-Cr3 C2 nanocomposite produced were investigated using CERT UMT-2 multi-functional tribological tester and Dura Scan hardness tester. The corrosion property was evaluated through linear polarization approach. The result showed that the coatings exhibited good stability and Cr_3 C_2 nanocomposite loading significantly improved the micro structural performance, hardness property,wear resistance as well as corrosion resistance of the coatings.
基金Project (59674025) supported by the National Natural Science Foundation of China
文摘The Ni-Cr alloy electrodepositing technology on iron substrate in the chlorid-sulfate solution and the impacts of main processing parameters on coating composition were studied. The optimal Ni-Cr alloy electrodepositing conditions are that the cathode current density is 16 A/dm^2,the plating solution temperature is 30℃ and the pH value is 2.5. The bright, compact coating gained under the optimal conditions has good cohesion and 24.1% Cr content. The results show that the coating is composed of crystalline, the average grain size is 82 nm and the higher the Cr content of coating, the larger the rigidity, and the higher the corrosion resistance. The rigidity of coating reaches 78.6(HR30T) and the passivation area broadens to 1.4 V when the Cr content of coating is 24.1%.
文摘Highly ordered and porous anodic aluminum oxide templates were prepared. The ordered copper nanowires arrays were assembled in nano-holes of the template by alternating current electrodeposition at lover voltage. The morphologies of template and copper nano-wires arrays were characterized by means of field emission scanning electron microscope (FESEM) and the crystal structure of copper nano-wires was determined by means of X-ray diffraction. The results indicate that copper nano-wires hold the preferred crystalline orientation along (111), (200), (220) and (331) crystal faces during growth, and the growth of copper nano-wires in the nano-holes of the template is homogenous and continuous.