蓄电池荷电状态(state of charge,SOC)是电池管理系统最为重要的参数之一,由于飞机蓄电池工作环境恶劣复杂,具有较强的非线性,给蓄电池的在线SOC估计带来较大的困难。以提高复杂应力条件下飞机蓄电池在线SOC估计精度为目的,采用性能测...蓄电池荷电状态(state of charge,SOC)是电池管理系统最为重要的参数之一,由于飞机蓄电池工作环境恶劣复杂,具有较强的非线性,给蓄电池的在线SOC估计带来较大的困难。以提高复杂应力条件下飞机蓄电池在线SOC估计精度为目的,采用性能测试实验对蓄电池性能参数的温度、放电率特性进行研究,并提出递推最小二乘法与扩展卡尔曼滤波算法结合的改进EKF方法,实现蓄电池等效电路模型参数的在线辨识以及蓄电池在线SOC的估计。上述方法通过物理实验进行了验证,实验结果表明,改进后EKF方法的SOC估计误差小于0.5%,估计精度获得明显提高。展开更多
基金This work was supported by the National Natural Science Foundation of China (51507015, 61773402, 61540037, 71271215, 61233008, 51425701, 70921001, 51577014), the Natural Science Foundation of Hunan Province (2015JJ3008), the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province (2014ZNDL002), and Hunan Province Science and Technology Program(2015NK3035).
文摘蓄电池荷电状态(state of charge,SOC)是电池管理系统最为重要的参数之一,由于飞机蓄电池工作环境恶劣复杂,具有较强的非线性,给蓄电池的在线SOC估计带来较大的困难。以提高复杂应力条件下飞机蓄电池在线SOC估计精度为目的,采用性能测试实验对蓄电池性能参数的温度、放电率特性进行研究,并提出递推最小二乘法与扩展卡尔曼滤波算法结合的改进EKF方法,实现蓄电池等效电路模型参数的在线辨识以及蓄电池在线SOC的估计。上述方法通过物理实验进行了验证,实验结果表明,改进后EKF方法的SOC估计误差小于0.5%,估计精度获得明显提高。