针对150 k V/30 k W电子束焊接高压电源高电压、大功率输出的要求,低压电路采用IGBT(Insulated Gate Bipolar Transistor)逆变隔离直流电源与逆变全桥串联的主电路拓扑,高压电路由3组升压变压器与10倍压整流电路的串联结构并联组成;设...针对150 k V/30 k W电子束焊接高压电源高电压、大功率输出的要求,低压电路采用IGBT(Insulated Gate Bipolar Transistor)逆变隔离直流电源与逆变全桥串联的主电路拓扑,高压电路由3组升压变压器与10倍压整流电路的串联结构并联组成;设计了高压采样电路、束流采样电路,以及双闭环控制电路.基于上述技术,实现了150 k V/30 k W高电压大功率输出.实验结果表明高压加速电源的输出线性度和束流输出线性度较好,同时高压稳定度和束流稳定度均在0.5%左右,能够满足电子束焊接的要求.展开更多
High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grad...High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.展开更多
文摘针对150 k V/30 k W电子束焊接高压电源高电压、大功率输出的要求,低压电路采用IGBT(Insulated Gate Bipolar Transistor)逆变隔离直流电源与逆变全桥串联的主电路拓扑,高压电路由3组升压变压器与10倍压整流电路的串联结构并联组成;设计了高压采样电路、束流采样电路,以及双闭环控制电路.基于上述技术,实现了150 k V/30 k W高电压大功率输出.实验结果表明高压加速电源的输出线性度和束流输出线性度较好,同时高压稳定度和束流稳定度均在0.5%左右,能够满足电子束焊接的要求.
文摘High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.