在线学习多模态资源匹配的精准性是自适应学习服务效率提升的关键问题,而目前在线学习服务存在着不同模态资源关联特征挖掘浅层化、模态资源表征形式缺乏规范化以及模态资源间智能匹配计算低效化等问题.针对以上问题,本文聚焦在线视频...在线学习多模态资源匹配的精准性是自适应学习服务效率提升的关键问题,而目前在线学习服务存在着不同模态资源关联特征挖掘浅层化、模态资源表征形式缺乏规范化以及模态资源间智能匹配计算低效化等问题.针对以上问题,本文聚焦在线视频与习题资源匹配研究问题,提出了一种基于深度学习的在线视频与习题匹配计算模型DL-VEMC(Online video and exercise matching calculation based on deep learning).首先,通过关键帧提取算法KEA、语音识别技术以及jieba分词技术深度挖掘在线资源多维度特征,实现在线视频与习题预处理;其次,使用CNN、注意力机制以及LSTM等深度学习技术协同开展视频关键帧表征,利用BERT技术对在线视频音频转录文本以及习题文本进行表征,获得在线视频与习题统一化语义表示;最后,融合在线视频与习题的语义信息,利用三层MLP拟合在线视频与习题匹配度值计算函数.实验结果表明,该模型的性能优于现有基线模型,消融实验和实际应用案例也验证了模型的有效性及可行性,为在线视频与习题匹配计算提供了理论依据.展开更多
随着数据体量的剧增,机器学习方法已逐渐由传统的静态学习模式转向面向流式数据的在线学习模式。任意数据流是指数据实例随着时间以流的方式逐个到达的同时,其特征空间可能会发生任意变化,即旧的特征可能随时消失,新的特征也可能随时出...随着数据体量的剧增,机器学习方法已逐渐由传统的静态学习模式转向面向流式数据的在线学习模式。任意数据流是指数据实例随着时间以流的方式逐个到达的同时,其特征空间可能会发生任意变化,即旧的特征可能随时消失,新的特征也可能随时出现。例如,在环境检测领域,新增传感器或旧传感器突然异常会使得数据流的特征空间发生任意变化。此外,现有面向数据流的在线学习方法大多假设可以获取所有数据实例的真实标签。然而,在真实应用中,由于人工标注数据的代价高昂,数据标签大多是稀疏的。为了解决标签稀疏场景下任意数据流的在线学习问题,提出一种基于被动-主动学习的在线学习算法PAACDS(Passive Aggressive Active Learning for Capricious Data Streams)以及它的变体PAACDS-I。首先,利用在线主动学习方法选择有价值的数据实例,使得可以在最小的监督下建立优越的预测模型。随后,在获得所选择数据实例的查询标签后,结合在线被动-主动更新规则和边界最大化原则来更新基于任意数据流中共享和新增特征空间的动态分类器。最后,将所提算法与现有的最先进方法在12个数据集上进行了比较,大量的实验对比和分析验证了所提算法在任意数据流标签稀疏场景下的有效性。展开更多
文摘在线学习多模态资源匹配的精准性是自适应学习服务效率提升的关键问题,而目前在线学习服务存在着不同模态资源关联特征挖掘浅层化、模态资源表征形式缺乏规范化以及模态资源间智能匹配计算低效化等问题.针对以上问题,本文聚焦在线视频与习题资源匹配研究问题,提出了一种基于深度学习的在线视频与习题匹配计算模型DL-VEMC(Online video and exercise matching calculation based on deep learning).首先,通过关键帧提取算法KEA、语音识别技术以及jieba分词技术深度挖掘在线资源多维度特征,实现在线视频与习题预处理;其次,使用CNN、注意力机制以及LSTM等深度学习技术协同开展视频关键帧表征,利用BERT技术对在线视频音频转录文本以及习题文本进行表征,获得在线视频与习题统一化语义表示;最后,融合在线视频与习题的语义信息,利用三层MLP拟合在线视频与习题匹配度值计算函数.实验结果表明,该模型的性能优于现有基线模型,消融实验和实际应用案例也验证了模型的有效性及可行性,为在线视频与习题匹配计算提供了理论依据.
文摘随着数据体量的剧增,机器学习方法已逐渐由传统的静态学习模式转向面向流式数据的在线学习模式。任意数据流是指数据实例随着时间以流的方式逐个到达的同时,其特征空间可能会发生任意变化,即旧的特征可能随时消失,新的特征也可能随时出现。例如,在环境检测领域,新增传感器或旧传感器突然异常会使得数据流的特征空间发生任意变化。此外,现有面向数据流的在线学习方法大多假设可以获取所有数据实例的真实标签。然而,在真实应用中,由于人工标注数据的代价高昂,数据标签大多是稀疏的。为了解决标签稀疏场景下任意数据流的在线学习问题,提出一种基于被动-主动学习的在线学习算法PAACDS(Passive Aggressive Active Learning for Capricious Data Streams)以及它的变体PAACDS-I。首先,利用在线主动学习方法选择有价值的数据实例,使得可以在最小的监督下建立优越的预测模型。随后,在获得所选择数据实例的查询标签后,结合在线被动-主动更新规则和边界最大化原则来更新基于任意数据流中共享和新增特征空间的动态分类器。最后,将所提算法与现有的最先进方法在12个数据集上进行了比较,大量的实验对比和分析验证了所提算法在任意数据流标签稀疏场景下的有效性。