期刊文献+
共找到125,754篇文章
< 1 2 250 >
每页显示 20 50 100
Dynamics and experiments of a tendon-actuated flexible robotic arm for capturing a floating target
1
作者 Xin Xia Yunpeng Sun Jialiang Sun 《Defence Technology(防务技术)》 2025年第5期216-241,共26页
Reusable and flexible capturing of space debris is highly required in future aerospace technologies.A tendon-actuated flexible robotic arm is therefore proposed for capturing floating targets in this paper.Firstly,an ... Reusable and flexible capturing of space debris is highly required in future aerospace technologies.A tendon-actuated flexible robotic arm is therefore proposed for capturing floating targets in this paper.Firstly,an accurate dynamic model of the flexible robotic arm is established by using the absolute nodal coordinate formulation(ANCF)in the framework of the arbitrary Lagrangian-Eulerian(ALE)description and the natural coordinate formulation(NCF).The contact and self-contact dynamics of the flexible robotic arm when bending and grasping an object are considered via a fast contact detection approach.Then,the dynamic simulations of the flexible robotic arm for capturing floating targets are carried out to study the influence of the position,size,and mass of the target object on the grasping performance.Finally,a principle prototype of the tendon-actuated flexible robotic arm is manufactured to validate the dynamic model.The corresponding grasping experiments for objects of various shapes are also conducted to illustrate the excellent performance of the flexible robotic arm. 展开更多
关键词 Tendon-actuated flexible robotic arm dynamic modeling Contact dynamics ALE-ANCF variable-length cable element Capturing experiments
在线阅读 下载PDF
Modelling and simulating the dynamics of resource deployment system
2
作者 WU Weiwei SHI Jian LIU Yexin 《Journal of Systems Engineering and Electronics》 2025年第3期701-713,共13页
Resource management must attach importance to effective resource deployment.Aiming at the research of resource deployment system,firstly,as an important factor of resource deployment system,corporate technological inn... Resource management must attach importance to effective resource deployment.Aiming at the research of resource deployment system,firstly,as an important factor of resource deployment system,corporate technological innovation social responsibility(CISR)is analyzed.Based on this,this paper constructs a system dynamics model to analyze the changes in resource deployment system affected by CISR.The simulation model is developed using Venism personal learning edition(PLE).The results show that CISR,acted as a new factor affecting the resource deployment system,has a positive effect on resource deployment system performance.Moreover,when CISR exceeds the threshold value,the resource deployment system performance increases significantly faster,reflecting that the resource deployment system becomes more efficient.The results show that the method proposed in this paper is feasible and efficient.This research provides theoretical and practical implications for resource deployment system research. 展开更多
关键词 corporate technological innovation social responsibility resource deployment system performance strategic uniqueness strategic flexibility system dynamics
在线阅读 下载PDF
Launch dynamics modeling and simulation of box-type multiple launch rocket system considering plane clearance contact
3
作者 Jinxin Tang Guoping Wang +3 位作者 Genyang Wu Yutian Sun Lilin Gu Xiaoting Rui 《Defence Technology(防务技术)》 2025年第5期105-123,共19页
As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canist... As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design. 展开更多
关键词 Box-type multiple launch rocket system Launch dynamics Plane clearance contact Contact detection algorithm Multibody system transfer matrix method(MSTMM)
在线阅读 下载PDF
Study on the coupling calculation method for the launch dynamics of a self-propelled artillery multibody system considering engraving process 被引量:2
4
作者 Shujun Zhang Xiaoting Rui +1 位作者 Hailong Yu Xiaoli Dong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期67-85,共19页
The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff... The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery. 展开更多
关键词 Self-propelled artillery Engraving process Multibody system dynamics Launch dynamics
在线阅读 下载PDF
Temperature-Induced Unfolding Pathway of Staphylococcal Enterotoxin B:Insights from Circular Dichroism and Molecular Dynamics Simulation 被引量:1
5
作者 LIU Ji ZHANG Shiyu +1 位作者 ZENG Yu DENG Yi 《食品科学》 EI CAS CSCD 北大核心 2024年第18期55-76,共22页
In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re... In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes. 展开更多
关键词 staphylococcal enterotoxin B circular dichroism molecular dynamics simulations temperature-induced unfolding
在线阅读 下载PDF
Revealing Al-O/Al-F reaction dynamic effects on the combustion of aluminum nanoparticles in oxygen/fluorine containing environments:A reactive molecular dynamics study meshing together experimental validation 被引量:1
6
作者 Gang Li Chuande Zhao +2 位作者 Qian Yu Fang Yang Jie Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期313-327,共15页
Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For inst... Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For instance,Al-O reaction is the most common pathway to release limited energy while Al-F reaction has received much attentions to enhance Al combustion efficiency.However,microscopic understanding of the Al-O/Al-F reaction dynamics remains unsolved,which is fundamentally necessary to further improve Al combustion efficiency.In this work,for the first time,Al-O/Al-F reaction dynamic effects on the combustion of aluminum nanoparticles(n-Al)in oxygen/fluorine containing environments have been revealed via reactive molecular dynamics(RMD)simulations meshing together combustion experiments.Three RMD simulation systems of Al core/O_(2)/HF,n-Al/O_(2)/HF,and n-Al/O_(2)/CF4 with oxygen percentage ranging from 0%to 100%have been performed.The n-Al combustion in mixed O_(2)/CF_4 environments have been conducted by constant volume combustion experiments.RMD results show that Al-O reaction exhibits kinetic benefits while Al-F reaction owns thermodynamic benefits for n-Al combustion.In n-Al/O_(2)/HF,Al-O reaction gives faster energy release rate than Al-F reaction(1.1 times).The optimal energy release efficiency can be achieved with suitable oxygen percentage of 10%and 50%for n-Al/O_(2)/HF and n-Al/O_(2)/CF_4,respectively.In combustion experiments,90%of oxygen percentage can optimally enhance the peak pressure,pressurization rate and combustion heat.Importantly,Al-O reaction prefers to occur on the surface regions while Al-F reaction prefers to proceed in the interior regions of n-Al,confirming the kinetic/thermodynamic benefits of Al-O/Al-F reactions.The synergistic effect of Al-O/Al-F reaction for greatly enhancing n-Al combustion efficiency is demonstrated at atomicscale,which is beneficial for optimizing the combustion performance of metallic fuel. 展开更多
关键词 Al-O/Al—F reaction Kinetic benefits Thermodynamic benefits Molecular dynamics COMBUSTION
在线阅读 下载PDF
Molecular Dynamics Simulation of Shock Response of CL-20 Co-crystals Containing Void Defects 被引量:1
7
作者 Changlin Li Wei Yang +5 位作者 Qiang Gan Yajun Wang Lin Liang Wenbo Zhang Shuangfei Zhu Changgen Feng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期364-374,共11页
To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitro... To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals. 展开更多
关键词 CL-20 co-crystals Molecular dynamics simulation Reactive forcefield Impact response Hot spot Void defect
在线阅读 下载PDF
Model-driven full system dynamics estimation of PMSM-driven chain shell magazine 被引量:1
8
作者 Kai Wei Longmiao Chen Quan Zou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期147-156,共10页
Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro... Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals. 展开更多
关键词 Chain shell magazine Full system dynamics estimation Disturbance estimation Parameter estimation Adaptive extended state observer
在线阅读 下载PDF
Machine learning molecular dynamics simulations of liquid methanol
9
作者 Jie Qian Junfan Xia Bin Jiang 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期12-21,I0009,I0010,共12页
As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular... As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems. 展开更多
关键词 liquid methanol molecular dynamics machine learning hydrogen bond force field
在线阅读 下载PDF
Study on the Mechanism of Nanopatterning in Printed Electronics Based on Molecular Dynamics Simulation
10
作者 HUANG Hai-yang LI Yan ZHANG Run-liang 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期237-244,共8页
In order to research the feasibility of using the selective adsorption principle to achieve automatic shaping of nano patterns,in this study,using the liquid gallium as the conductive ink and graphene as the printing ... In order to research the feasibility of using the selective adsorption principle to achieve automatic shaping of nano patterns,in this study,using the liquid gallium as the conductive ink and graphene as the printing plate surface,by changing the surface wettability of patterned areas on the nanoscale of graphene printed boards,the automatic formation of liquid gallium patterns on the graphene printed plate surface was simulated.The results indicated that liquid gallium can achieve automatic patterning on the surface of graphene patterned areas;the greater the interaction energy between gallium and carbon atoms,the clearer the pattern;gallium liquid is prone to remain in complex local positions of the pattern,making it difficult to shape the pattern;if the spacing between adjacent pattern lines is too large or too small,it will result in residual gallium liquid between the lines;increasing the thickness of the gallium film will cause the pattern to expand beyond the boundary,but increasing the thickness of the gallium film can also enhance the thickness and uniformity of the pattern lines.In summary,the principle of selective adsorption can be used to achieve the automatic formation of nano patterns,and the pattern formation effect is influenced by factors such as atomic interaction energy and pattern configuration. 展开更多
关键词 Molecular dynamics Liquid gallium GRAPHENE Pattern forming
在线阅读 下载PDF
Solvent transport dynamics and its effect on evolution of mechanical properties of nitrocellulose(NC)-based propellants under hot-air drying process
11
作者 Enfa Fu Mingjun Yi +1 位作者 Qianling Liu Zhenggang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期262-270,共9页
Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics... Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants. 展开更多
关键词 Nitrocellulose-based propellants Solvent transport dynamics Mechanical properties Drying kinetics Effective solvent diffusion coefficient
在线阅读 下载PDF
Missile guidance law design based on free-time convergent error dynamics
12
作者 LIU Yuanhe XIE Nianhao +1 位作者 LI Kebo LIANG Yan’gang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1315-1325,共11页
To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establis... To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establishing a desired model for free-time convergent error dynamics,characterized by its independence from initial conditions and guidance parameters,and adjustable convergence time.This foundation facilitates the derivation of specific guidance laws that integrate constraints such as leading angle,impact angle,and impact time.The theoretical framework of this study elucidates the nuances and synergies between the proposed guidance laws and existing methodologies.Empirical evaluations through simulation comparisons underscore the enhanced accuracy and adaptability of the proposed laws. 展开更多
关键词 guidance design free-time convergence error dynamics approach impact angle constraint impact time constraint
在线阅读 下载PDF
Structural Color Dynamic Graphics Display Based on Microlens Array 被引量:1
13
作者 LI Xue-han LIU Ling-zhi +1 位作者 HUANG Min LI Xiu 《印刷与数字媒体技术研究》 北大核心 2025年第2期162-168,共7页
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be... It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display. 展开更多
关键词 Structural color Microlens array dynamic graphics display Moirémagnification Optical anti-counterfeiting
在线阅读 下载PDF
Dynamic behavior of a battery pack based on single reference impact testing of a secondary cell
14
作者 Zhen Xiao Wen-rong Fan Wei-song Hu 《中国科学技术大学学报》 北大核心 2025年第2期44-50,43,I0002,共9页
The mechanical properties of secondary cells are crucial to the safety and reliability of battery packs,which can fail due to extrusion and vibration in a vehicle crash.To analyze the structural response of the second... The mechanical properties of secondary cells are crucial to the safety and reliability of battery packs,which can fail due to extrusion and vibration in a vehicle crash.To analyze the structural response of the secondary cell and its other dynamic behaviors,the experiment and some numerical simulations were carried out based on single reference impact testing.Then,an equivalent constitutive relationship of the secondary cell was proposed to reveal the dynamic properties and used to guide the safety estimation of the battery pack.As the input parameter to the finite element model,the equivalent constitutive relationship,including but not limited to the elastic modulus and stain-stress curve,determines the simulation precision of the battery packs.Compared to the experimental results of the natural frequency of the battery pack,the simulation error is below 2%when the elastic modulus of the secondary cell in the battery pack has been verified. 展开更多
关键词 equivalent constitutive relationship secondary cell dynamic property
在线阅读 下载PDF
Fixed-time Target-guided Coordinate Control of Unmanned Surface Vehicles Based on Dynamic Surface Control
15
作者 LI Chao−yi XU Hai−xiang +2 位作者 YU Wen−zhao DU Zhe DING Ya−nan 《船舶力学》 北大核心 2025年第6期849-862,共14页
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b... This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results. 展开更多
关键词 unmanned surface vehicle distributed control target-guided coordinate control fixed-time convergence dynamic surface control
在线阅读 下载PDF
Dynamic mechanical properties and constitutive model of red sandstone under different loading rates and high temperatures
16
作者 LI Ye YANG Sheng-qi +2 位作者 LIU Zi-lu WANG Chao LI Zi-li 《Journal of Central South University》 2025年第5期1922-1937,共16页
Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate fail... Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate failure modes,and to analyze the correlation between the strain rate,temperature,peak strength,and ultimate failure modes.The results show that the mass decreases with the increase of treatment temperature,and the pattern of the stress−strain curves is not impacted by the increase of impact velocity.Under a fixed temperature,the higher the impact velocity,the higher the strain rate and dynamical compression strength,indicating a strain rate hardening effect for red sandstone.With an increasing treatment temperature,the strain rate gradually increases when the impact loading remains unchanged,suggesting a rise in the deformability of red sandstone under high-temperature environment.Raise in both impact velocity and treatment temperature leads to an intensification of the damage features of the red sandstone.Similarly,higher strain rates lead to the intensification of the final damage mode of red sandstone regardless of the change in treatment temperature.Moreover,a dynamic damage constitutive model that considers the impacts of strain rate and temperature is proposed based on experimental results. 展开更多
关键词 high temperature strain rate SHPB dynamic tests dynamic damage constitutive
在线阅读 下载PDF
Research on multi-scale simulation and dynamic verification of high dynamic MEMS components in additive manufacturing
17
作者 Sining Lv Hengzhen Feng +2 位作者 Wenzhong Lou Chuan Xiao Shiyi Li 《Defence Technology(防务技术)》 2025年第5期275-291,共17页
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s... Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components. 展开更多
关键词 Additive manufacturing High dynamic MEMS components Multiscale control Process optimization High dynamic verification
在线阅读 下载PDF
Effect of water on dynamic mechanical properties of coal under different depth stress conditions
18
作者 LI Sheng-wei GAO Ming-zhong +2 位作者 LI Ye-xue WANG Jun ZENG Gang 《Journal of Central South University》 2025年第1期220-228,共9页
Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-... Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters. 展开更多
关键词 COAL mining depths water saturation SHPB dynamic compressive strength
在线阅读 下载PDF
A novel trajectories optimizing method for dynamic soaring based on deep reinforcement learning
19
作者 Wanyong Zou Ni Li +2 位作者 Fengcheng An Kaibo Wang Changyin Dong 《Defence Technology(防务技术)》 2025年第4期99-108,共10页
Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soar... Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soaring trajectory is crucial for maximizing energy efficiency during flight.Existing nonlinear programming methods are heavily dependent on the choice of initial values which is hard to determine.Therefore,this paper introduces a deep reinforcement learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization.Initially,the gliding trajectory is parameterized using Fourier basis functions,achieving a flexible trajectory representation with a minimal number of hyperparameters.Subsequently,the trajectory optimization problem is formulated as a dynamic interactive process of Markov decision-making.The hyperparameters of the trajectory are optimized using the Proximal Policy Optimization(PPO2)algorithm from deep reinforcement learning(DRL),reducing the strong reliance on initial value settings in the optimization process.Finally,a comparison between the proposed method and the nonlinear programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same performance requirements.Specifically,the proposed method achieves a 34%reduction in maximum thrust,a 39.4%decrease in maximum thrust difference,and a 33%reduction in maximum airspeed difference. 展开更多
关键词 dynamic soaring Differential flatness Trajectory optimization Proximal policy optimization
在线阅读 下载PDF
Enhanced dynamic impact resistance of UHMWPE fabrics impregnated with double-thickening shear thickening fluid
20
作者 Yiting Meng Heyu Chen +3 位作者 Hengyu Lin Zhehong Lu Yubing Hu Yanan Zhang 《Defence Technology(防务技术)》 2025年第7期321-333,共13页
Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by ad... Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by adding carboxyl-modified silica(C-SiO2),PAA,and CaCl_(2) to achieve higher viscosity over 25℃.The rheological behavior of C-SiO_(2)-based shear thickening fluid(CS-STF)was investigated at a temperature range of 25–55℃.Unlike SiO_(2)-based STF,which exhibits single-step thickening and a negative correlation between viscosity and temperature.As the C-SiO_(2) content was 41%(w/w)and the mass ratio of PAA:CaCl_(2):C-SiO_(2) was 3:1:10,the CS-STF displayed a double-thickening behavior,and the peak viscosity reached 1330 Pa·s at 35℃.From the yarn pull-out test,the inter-yarn force was significantly increased with the increasing CS-STF content.Treating UHMWPE fabrics with CS-STF improved the impact resistance effectively.In the blunt impact test,the U-CS fabrics with high CS-STF content(121.45 wt%)experienced penetration failure under high impact energy(18 J)due to stress concentration caused by the shear thickening behavior.The knife stabbing test demonstrated that U-CS fabrics with appropriate content(88.38 wt%)have the best stabbing resistance in various impact energies.Overall,this study proposed a high-performence STF showing double-thickening and enhancing shear-thickening behavior at a wide temperature range,the composite fabrics with the performance of resisting both the blunt and stab impact had broad application prospects in the field of personal protection. 展开更多
关键词 Shear thickening fluid Double-thickening behavior UHMWPE fabrics dynamic impact resistance
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部