Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below ...Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below pile end are modeled as virtual soil pile whose cross-section area is the same as that of the pile and the soil layers surrounding the pile are described by the plane strain model.Then,by virtue of Laplace transform and impedance function transfer method,the analytical solution of longitudinal dynamic response at the pile head in frequency domain is yielded.Also,the semi-analytical solution in time domain undergoing half-cycle sine pulse at the pile head is obtained by means of inverse Laplace transform.Based on these solutions,a parametric study is conducted to analyze emphatically the effects of parameters of soil below pile end on velocity admittance and reflected wave signals at the pile head.Additionally,a comparison with other models with different supporting conditions from soil below pile end is performed to verify the model presented.展开更多
On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the de...On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the development law and deformation property of axial force of pile body, shaft resistance of pile, and cumulative settlement of pile head under vertical cyclic dynamic loads were concluded. Through the comparison and analysis of the test results of dynamic models, the test results of Poulos(1989) and cumulative settlement model of the single pile under cyclic loads were confirmed. Based on the above research, Fortran language was adopted to introduce the soil attenuation factor, the secondary development of relevant modules of ABAQUS was carried out, and the effect of soil attenuation factor on dynamic property of pile-soil was discussed further.展开更多
基金Project(50879077) supported by the National Natural Science Foundation of China
文摘Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below pile end are modeled as virtual soil pile whose cross-section area is the same as that of the pile and the soil layers surrounding the pile are described by the plane strain model.Then,by virtue of Laplace transform and impedance function transfer method,the analytical solution of longitudinal dynamic response at the pile head in frequency domain is yielded.Also,the semi-analytical solution in time domain undergoing half-cycle sine pulse at the pile head is obtained by means of inverse Laplace transform.Based on these solutions,a parametric study is conducted to analyze emphatically the effects of parameters of soil below pile end on velocity admittance and reflected wave signals at the pile head.Additionally,a comparison with other models with different supporting conditions from soil below pile end is performed to verify the model presented.
基金Projects(51478178,51508181) supported by the National Natural Science Foundation of China
文摘On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the development law and deformation property of axial force of pile body, shaft resistance of pile, and cumulative settlement of pile head under vertical cyclic dynamic loads were concluded. Through the comparison and analysis of the test results of dynamic models, the test results of Poulos(1989) and cumulative settlement model of the single pile under cyclic loads were confirmed. Based on the above research, Fortran language was adopted to introduce the soil attenuation factor, the secondary development of relevant modules of ABAQUS was carried out, and the effect of soil attenuation factor on dynamic property of pile-soil was discussed further.