Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system ...Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system while the tank is moving, better understanding of the dynamic behavior of the gun system is required. In this study, the dynamic behaviour of a gun system is discussed in this respect. Both experimental and numerical applications for the determination of the dynamic behaviour of a tank gun system are investigated. Methods such as the use of muzzle reference system(MRS) and vibration absorbers, and active vibration control technology for the control and the reduction of the muzzle tip deflections are also reviewed. For the existing gun systems without making substantial modifications,MRS could be useful in controlling the deflections of gun barrels with estimation/prediction algorithms.The vibration levels could be cut into half by the use of optimised vibration absorbers for an existing gun.A new gun system with a longer barrel can be as accurate as the one with a short barrel with the appropriate structural modifications.展开更多
This paper investigates the feasibility of using an active dynamic vibration absorber(ADVA) for active vibration control of a flexible missile system through simulation.Based on the principles of a dynamic vibration a...This paper investigates the feasibility of using an active dynamic vibration absorber(ADVA) for active vibration control of a flexible missile system through simulation.Based on the principles of a dynamic vibration absorber(DVA),a ring-type ADVA is first designed to attenuate the elastic vibration of the flexible missile,and the design of the active controller adopts the proportional-integral-derivative(PID)control algorithm.The motion equations of a flexible missile with an ADVA,which is subjected to follower thrust at its aft end,are derived using the Lagrangian approach.Taking the minimum of the root mean square(RMS) of the lateral displacement response of the center of mass as the objective function,a genetic algorithm(GA) is used to optimize the parameter of the DVA and PID controller.The numerical calculations show that the ADVA and DVA are effective in suppressing the vibration and provide approximately 41.2% and 17.6% improvement,respectively,compa red with the case of no DVA,The ADVA has better performance than the DVA,When the missile is subjected to follower thrust,the effect of vibration reduction is more effective than the case without follower thrust.It is feasible to reduce vibration and improve the stability of flexible missiles by means of the ADVA.展开更多
近年来,嵌入式声学黑洞(acoustic black holes,ABH)以其优异的性能,在结构减振降噪、声波调控、能量回收等领域展示了广阔的应用前景,但其局部结构强度弱化会影响其工程实用性。提出一种碟形声学黑洞(dish-shaped acoustic black hole,D...近年来,嵌入式声学黑洞(acoustic black holes,ABH)以其优异的性能,在结构减振降噪、声波调控、能量回收等领域展示了广阔的应用前景,但其局部结构强度弱化会影响其工程实用性。提出一种碟形声学黑洞(dish-shaped acoustic black hole,DABH)结构,将其附加在主体结构上,以实现对主体结构的宽频减振。在Rayleigh-Ritz法框架下,选择高斯函数作为基函数,根据声学黑洞板的形状确定基函数的分布,避免质量和刚度矩阵的奇异化,建立了其耦合系统半解析模型。通过与有限元模态分析结果的对比,验证了半解析建模方法的正确性。研究了碟形声学黑洞结构参数以及连接位置对主体结构振动响应特性的影响规律,分析了碟形声学黑洞的ABH效应以及与主体结构的耦合效应,揭示了其宽频调谐减振的机理,为拓展声学黑洞在宽频结构振动控制上的应用提供了新的思路。展开更多
文摘Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system while the tank is moving, better understanding of the dynamic behavior of the gun system is required. In this study, the dynamic behaviour of a gun system is discussed in this respect. Both experimental and numerical applications for the determination of the dynamic behaviour of a tank gun system are investigated. Methods such as the use of muzzle reference system(MRS) and vibration absorbers, and active vibration control technology for the control and the reduction of the muzzle tip deflections are also reviewed. For the existing gun systems without making substantial modifications,MRS could be useful in controlling the deflections of gun barrels with estimation/prediction algorithms.The vibration levels could be cut into half by the use of optimised vibration absorbers for an existing gun.A new gun system with a longer barrel can be as accurate as the one with a short barrel with the appropriate structural modifications.
基金supported by the National Natural Science Foundation of China(10972033)。
文摘This paper investigates the feasibility of using an active dynamic vibration absorber(ADVA) for active vibration control of a flexible missile system through simulation.Based on the principles of a dynamic vibration absorber(DVA),a ring-type ADVA is first designed to attenuate the elastic vibration of the flexible missile,and the design of the active controller adopts the proportional-integral-derivative(PID)control algorithm.The motion equations of a flexible missile with an ADVA,which is subjected to follower thrust at its aft end,are derived using the Lagrangian approach.Taking the minimum of the root mean square(RMS) of the lateral displacement response of the center of mass as the objective function,a genetic algorithm(GA) is used to optimize the parameter of the DVA and PID controller.The numerical calculations show that the ADVA and DVA are effective in suppressing the vibration and provide approximately 41.2% and 17.6% improvement,respectively,compa red with the case of no DVA,The ADVA has better performance than the DVA,When the missile is subjected to follower thrust,the effect of vibration reduction is more effective than the case without follower thrust.It is feasible to reduce vibration and improve the stability of flexible missiles by means of the ADVA.
文摘近年来,嵌入式声学黑洞(acoustic black holes,ABH)以其优异的性能,在结构减振降噪、声波调控、能量回收等领域展示了广阔的应用前景,但其局部结构强度弱化会影响其工程实用性。提出一种碟形声学黑洞(dish-shaped acoustic black hole,DABH)结构,将其附加在主体结构上,以实现对主体结构的宽频减振。在Rayleigh-Ritz法框架下,选择高斯函数作为基函数,根据声学黑洞板的形状确定基函数的分布,避免质量和刚度矩阵的奇异化,建立了其耦合系统半解析模型。通过与有限元模态分析结果的对比,验证了半解析建模方法的正确性。研究了碟形声学黑洞结构参数以及连接位置对主体结构振动响应特性的影响规律,分析了碟形声学黑洞的ABH效应以及与主体结构的耦合效应,揭示了其宽频调谐减振的机理,为拓展声学黑洞在宽频结构振动控制上的应用提供了新的思路。