Coal dust explosion conducted in a 200 mm diameter, 29.6 m long tube is presented in this paper. 40 dust dispersion system sets were used to disperse coal dust into the tube. A constant temperature hot wire anemometer...Coal dust explosion conducted in a 200 mm diameter, 29.6 m long tube is presented in this paper. 40 dust dispersion system sets were used to disperse coal dust into the tube. A constant temperature hot wire anemometer was used to measure the gas velocity during the dispersion process. Kistler piezoelectric pressure sensors were used to measure the propagation of the pressure wave during the explosion process. The overpres- sure of coal dust explosion in the tube was 70 kPa and the velocity of pressure wave propagating along the tube was 370 m/s approximately. The minimum concentration for dust explosion propagating along the tube was 100 g/m3. The effects of two kinds of suppressing agents used to suppress the coal dust explosion were studled.展开更多
The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the...The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the two-color pyrometer technique,and the chemical composition of solid combustion residues were analyzed.The experimental results showed that the average flame propagation velocities of 23μm,40μm,60μm and 103μm MgH_(2)dust clouds in the stable propagation stage were 3.7 m/s,2.8 m/s,2.1 m/s and 0.9 m/s,respectively.The dust clouds with smaller particle sizes had faster flame propagation velocity and stronger oscillation intensity,and their flame temperature distributions were more even and the temperature gradients were smaller.The flame structures of MgH_(2)dust clouds were significantly affected by the particle sinking velocity,and the combustion processes were accompanied by micro-explosion of particles.The falling velocities of 23μm and 40μm MgH_(2)particles were 2.24 cm/s and 6.71 cm/s,respectively.While the falling velocities of 60μm and 103μm MgH_(2)particles were as high as 15.07 cm/s and 44.42 cm/s,respectively,leading to a more rapid downward development and irregular shape of the flame.Furthermore,the dehydrogenation reaction had a significant effect on the combustion performance of MgH_(2)dust.The combustion of H_(2)enhanced the ignition and combustion characteristics of MgH_(2)dust,resulting in a much higher explosion power than the pure Mg dust.The micro-structure characteristics and combustion residues composition analysis of MgH_(2)dust indicated that the combustion control mechanism of MgH_(2)dust flame was mainly the heterogeneous reaction,which was affected by the dehydrogenation reaction.展开更多
Firedamp and coal dust explosion constitute a lion’s share in mine accidents in a global mining scenario.This paper reports a list of mine explosion disasters since last two decades,a critical review of the different...Firedamp and coal dust explosion constitute a lion’s share in mine accidents in a global mining scenario.This paper reports a list of mine explosion disasters since last two decades,a critical review of the different prevention and constructive measures,and its recent development to avoid firedamp and coal dust explosion.Preventive legislation in core coal-producing countries,viz.China,USA,Australia,South Africa,and India related to firedamp and coal dust explosion are critically analysed.Accidents occurred due to explosion after Nationalisation of Coal Mines(1973)in India are listed.Prevention and constructive measures adopted in India are critically analysed with respect to the global mining scenario.Measures like methane credit concept,classification of mines/seams with respect to explosion risk zone,deflagration index;installation of automatic fire warning devices,canopy air curtain technology,explosion-prevention measures,such as fire-retardant materials,inhibitors,extinguishing agent,dust suppressor,and active explosion barrier are discussed in detail to avoid explosion and thereby adhering to zero accident policy due to coal mine explosion.展开更多
Mine disasters occur predominantly due to methane or coal dust explosion or a combination of both.Among the top ten worst coal mine disasters in India, nine are due to coal dust explosion. The current paper describes ...Mine disasters occur predominantly due to methane or coal dust explosion or a combination of both.Among the top ten worst coal mine disasters in India, nine are due to coal dust explosion. The current paper describes a general overview of the parameters causing dispersion leading to coal dust explosion,and computational fluid dynamics(CFD) simulation study to observe the effects of particle size on dispersion in Indian coal mines. Turbulent kinetic energy(TKE) and velocity vector path of dust-air mixture and dust-free air were simulated to understand their effects on coal dust dispersion. The TKE contours and velocity vector paths for dust-free air were uniform and symmetrical due to resistance-free path available. The TKE contours and velocity vector paths for dust-air mixture shows the asymmetrical distribution of contours, due to entrainment of air with dust particles. Vortices were observed in velocity vector paths which gradually diminish on increment of time sequence. These vortices are dead centres where velocity and coal dust particles concentration are both zero.展开更多
基金Sponsored by the National Natural Science Foundation of China (10772032)the State Key Laboratory of Explosion Science and Technology Foundation (ZDKT08-2-6,YBKT09-1)
文摘Coal dust explosion conducted in a 200 mm diameter, 29.6 m long tube is presented in this paper. 40 dust dispersion system sets were used to disperse coal dust into the tube. A constant temperature hot wire anemometer was used to measure the gas velocity during the dispersion process. Kistler piezoelectric pressure sensors were used to measure the propagation of the pressure wave during the explosion process. The overpres- sure of coal dust explosion in the tube was 70 kPa and the velocity of pressure wave propagating along the tube was 370 m/s approximately. The minimum concentration for dust explosion propagating along the tube was 100 g/m3. The effects of two kinds of suppressing agents used to suppress the coal dust explosion were studled.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272001,11972046)the Outstanding Youth Project of Natural Science Foundation of Anhui Province(Grant No.2108085Y02)the Major Project of Anhui University Natural Science Foundation(Grant No.KJ2020ZD30)。
文摘The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the two-color pyrometer technique,and the chemical composition of solid combustion residues were analyzed.The experimental results showed that the average flame propagation velocities of 23μm,40μm,60μm and 103μm MgH_(2)dust clouds in the stable propagation stage were 3.7 m/s,2.8 m/s,2.1 m/s and 0.9 m/s,respectively.The dust clouds with smaller particle sizes had faster flame propagation velocity and stronger oscillation intensity,and their flame temperature distributions were more even and the temperature gradients were smaller.The flame structures of MgH_(2)dust clouds were significantly affected by the particle sinking velocity,and the combustion processes were accompanied by micro-explosion of particles.The falling velocities of 23μm and 40μm MgH_(2)particles were 2.24 cm/s and 6.71 cm/s,respectively.While the falling velocities of 60μm and 103μm MgH_(2)particles were as high as 15.07 cm/s and 44.42 cm/s,respectively,leading to a more rapid downward development and irregular shape of the flame.Furthermore,the dehydrogenation reaction had a significant effect on the combustion performance of MgH_(2)dust.The combustion of H_(2)enhanced the ignition and combustion characteristics of MgH_(2)dust,resulting in a much higher explosion power than the pure Mg dust.The micro-structure characteristics and combustion residues composition analysis of MgH_(2)dust indicated that the combustion control mechanism of MgH_(2)dust flame was mainly the heterogeneous reaction,which was affected by the dehydrogenation reaction.
基金The authors are grateful to the Ministry of Coal,Government of India(No.CIL/R&D/01/60/2016)for financial support。
文摘Firedamp and coal dust explosion constitute a lion’s share in mine accidents in a global mining scenario.This paper reports a list of mine explosion disasters since last two decades,a critical review of the different prevention and constructive measures,and its recent development to avoid firedamp and coal dust explosion.Preventive legislation in core coal-producing countries,viz.China,USA,Australia,South Africa,and India related to firedamp and coal dust explosion are critically analysed.Accidents occurred due to explosion after Nationalisation of Coal Mines(1973)in India are listed.Prevention and constructive measures adopted in India are critically analysed with respect to the global mining scenario.Measures like methane credit concept,classification of mines/seams with respect to explosion risk zone,deflagration index;installation of automatic fire warning devices,canopy air curtain technology,explosion-prevention measures,such as fire-retardant materials,inhibitors,extinguishing agent,dust suppressor,and active explosion barrier are discussed in detail to avoid explosion and thereby adhering to zero accident policy due to coal mine explosion.
文摘Mine disasters occur predominantly due to methane or coal dust explosion or a combination of both.Among the top ten worst coal mine disasters in India, nine are due to coal dust explosion. The current paper describes a general overview of the parameters causing dispersion leading to coal dust explosion,and computational fluid dynamics(CFD) simulation study to observe the effects of particle size on dispersion in Indian coal mines. Turbulent kinetic energy(TKE) and velocity vector path of dust-air mixture and dust-free air were simulated to understand their effects on coal dust dispersion. The TKE contours and velocity vector paths for dust-free air were uniform and symmetrical due to resistance-free path available. The TKE contours and velocity vector paths for dust-air mixture shows the asymmetrical distribution of contours, due to entrainment of air with dust particles. Vortices were observed in velocity vector paths which gradually diminish on increment of time sequence. These vortices are dead centres where velocity and coal dust particles concentration are both zero.